《(江蘇專用)2020版高考數(shù)學二輪復習 微專題八 空間幾何體的表面積和體積講義(無答案)蘇教版》由會員分享,可在線閱讀,更多相關《(江蘇專用)2020版高考數(shù)學二輪復習 微專題八 空間幾何體的表面積和體積講義(無答案)蘇教版(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、微專題八 空間幾何體的表面積和體積
在近幾年的高考題中,對于空間幾何體的表面積和體積小題必有一題,難度為中檔題,在2020年、2020年都出現(xiàn)了以空間幾何體為背景的應用題,考察了幾何體體積的最值以及測量問題,難度為中檔題.
年份
填空題
解答題
2020
T6組合體的體積
T18空間幾何體為背景的應用題
2020
T10組合體的體積
2020
T9長方體和三棱錐體積
目標1 空間幾何體的表面積與體積
例1 (1) 現(xiàn)有一個底面半徑為3cm,母線長為5cm的圓錐狀實心鐵器,將其高溫熔化后鑄成一個實心鐵球(不計損耗),則該鐵球的半徑為____
2、____cm.
(2) 設棱長為a的正方體的體積和表面積分別為V1,S1,底面半徑和高均為r的圓錐的體積和側(cè)面積分別為V2,S2,若=,則的值為________.
(3) 學生到工廠勞動實踐,利用3D打印技術制作模型,如圖,該模型為長方體ABCD-A1B1C1D1挖去四棱錐O-EFGH后所得的幾何體,其中O為長方體的中心,E,F(xiàn),G,H分別為所在棱的中點,AB=BC=6cm,AA1=4cm.3D打印所用原料密度為0.9g/cm3,不考慮打印損耗,制作該模型所需原料的質(zhì)量為________g.
點評:
【思維變式題組訓練】
1.已知一個圓錐的軸截面是等邊三角形,側(cè)面積為
3、6π,則該圓錐的體積等于________.
2.如圖,在直三棱柱ABC-A1B1C1中,點M為棱AA1的中點,記三棱錐A1-MBC的體積為V1,四棱錐A1-BB1C1C的體積為V2,則的值是________.
3.如圖,在一個圓柱形容器內(nèi)盛有高度為8cm的水,若放入三個相同的球(球的半徑與圓柱的底面半徑相同)后,水恰好淹沒最上面的球,則此圓柱底面的半徑是________cm.
4.已知四棱錐的底面是邊長為的正方形,側(cè)棱長均為.若圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,另一個底面的圓心為四棱錐底面的中心,則該圓柱的體積為________.
4、
目標2 空間幾何體的最值問題
例2 (1) 如圖,在直三棱柱ABC-A1B1C1中,AB=1,BC=2,BB1=3,∠ABC=90°,點D為側(cè)棱BB1上的動點.則當AD+DC1最小時,三棱錐D-ABC1的體積為________.
(2) 將矩形ABCD繞邊AB旋轉(zhuǎn)一周得到一個圓柱,AB=3,BC=2,圓柱上底面圓心為O,△EFG為下底面圓的一個內(nèi)接直角三角形,則三棱錐O-EFG體積的最大值是________.
例3 將2張邊長均為1分米的正方形紙片分別按甲、乙兩種方式剪裁并廢棄陰影部分.
(1) 在圖甲的方式下,剩余部分恰能完全覆蓋某圓錐的表面,求該圓錐的母
5、線長及底面半徑;
(2) 在圖乙的方式下,剩余部分能完全覆蓋一個長方體的表面,求長方體體積的最大值.
點評:
【思維變式題組訓練】
1.有一根長為6cm,底面半徑為0.5cm的圓柱形鐵管,用一段鐵絲在鐵管上纏繞4圈,并使鐵絲的兩個端點落在圓柱的同一母線的兩端,則鐵絲的長度最少為________cm.
2.表面積為12π的圓柱,則當其體積最大時,該圓柱的底面半徑與高的比為________.
3.在一個半徑為1的半球材料中截取三個高度均為h的圓柱,其軸截面如圖所示,設三個圓柱體積之和為V=f(h).
(1) 求f(h)的解析式,并寫出h的取值范圍;
(2) 求三個圓柱體積之和V的最大值.