《數(shù)學(xué)必修4》第二章第四節(jié)“平面向量的數(shù)量積”

上傳人:wuy****ng 文檔編號:123849399 上傳時(shí)間:2022-07-23 格式:DOC 頁數(shù):15 大?。?84.01KB
收藏 版權(quán)申訴 舉報(bào) 下載
《數(shù)學(xué)必修4》第二章第四節(jié)“平面向量的數(shù)量積”_第1頁
第1頁 / 共15頁
《數(shù)學(xué)必修4》第二章第四節(jié)“平面向量的數(shù)量積”_第2頁
第2頁 / 共15頁
《數(shù)學(xué)必修4》第二章第四節(jié)“平面向量的數(shù)量積”_第3頁
第3頁 / 共15頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《《數(shù)學(xué)必修4》第二章第四節(jié)“平面向量的數(shù)量積”》由會(huì)員分享,可在線閱讀,更多相關(guān)《《數(shù)學(xué)必修4》第二章第四節(jié)“平面向量的數(shù)量積”(15頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、說課內(nèi)容:普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教A版)《數(shù)學(xué)必修4》第二章第四節(jié)“平面向量的數(shù)量積”的第一課時(shí)---平面向量數(shù)量積的物理背景及其含義。 下面,我從背景分析、教學(xué)目標(biāo)設(shè)計(jì)、課堂結(jié)構(gòu)設(shè)計(jì)、教學(xué)過程設(shè)計(jì)、教學(xué)媒體設(shè)計(jì)及教學(xué)評價(jià)設(shè)計(jì)六個(gè)方面對本節(jié)課的思考進(jìn)行說明。 一、 背景分析 1、學(xué)習(xí)任務(wù)分析 平面向量的數(shù)量積是繼向量的線性運(yùn)算之后的又一重要運(yùn)算,也是高中數(shù)學(xué)的一個(gè)重要概念,在數(shù)學(xué)、物理等學(xué)科中應(yīng)用十分廣泛。本節(jié)內(nèi)容教材共安排兩課時(shí),其中第一課時(shí)主要研究數(shù)量積的概念,第二課時(shí)主要研究數(shù)量積的坐標(biāo)運(yùn)算,本節(jié)課是第一課時(shí)。 本節(jié)課的主要學(xué)習(xí)任務(wù)是通過物理中“功”的事例抽象出平面向量

2、數(shù)量積的概念,在此基礎(chǔ)上探究數(shù)量積的性質(zhì)與運(yùn)算律,使學(xué)生體會(huì)類比的思想方法,進(jìn)一步培養(yǎng)學(xué)生的抽象概括和推理論證的能力。其中數(shù)量積的概念既是對物理背景的抽象,又是研究性質(zhì)和運(yùn)算律的基礎(chǔ)。同時(shí)也因?yàn)樵谶@個(gè)概念中,既有長度又有角度,既有形又有數(shù),是代數(shù)、幾何與三角的最佳結(jié)合點(diǎn),不僅應(yīng)用廣泛,而且很好的體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,使得數(shù)量積的概念成為本節(jié)課的核心概念,自然也是本節(jié)課教學(xué)的重點(diǎn)。 2、學(xué)生情況分析 學(xué)生在學(xué)習(xí)本節(jié)內(nèi)容之前,已熟知了實(shí)數(shù)的運(yùn)算體系,掌握了向量的概念及其線性運(yùn)算,具備了功等物理知識,并且初步體會(huì)了研究向量運(yùn)算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概

3、念出發(fā),在與實(shí)數(shù)運(yùn)算類比的基礎(chǔ)上研究性質(zhì)和運(yùn)算律。這為學(xué)生學(xué)習(xí)數(shù)量積做了很好的鋪墊,使學(xué)生倍感親切。但也正是這些干擾了學(xué)生對數(shù)量積概念的理解,一方面,相對于線性運(yùn)算而言,數(shù)量積的結(jié)果發(fā)生了本質(zhì)的變化,兩個(gè)有形有數(shù)的向量經(jīng)過數(shù)量積運(yùn)算后,形卻消失了,學(xué)生對這一點(diǎn)是很難接受的;另一方面,由于受實(shí)數(shù)乘法運(yùn)算的影響,也會(huì)造成學(xué)生對數(shù)量積理解上的偏差,特別是對性質(zhì)和運(yùn)算律的理解。因而本節(jié)課教學(xué)的難點(diǎn)數(shù)量積的概念。 二、 教學(xué)目標(biāo)設(shè)計(jì) 《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》 對本節(jié)課的要求有以下三條: (1)通過物理中“功”等事例,理解平面向量數(shù)量積的含義及其物理意義。 (2)體會(huì)平面向量的數(shù)量積與

4、向量投影的關(guān)系。 (3)能用運(yùn)數(shù)量積表示兩個(gè)向量的夾角,會(huì)用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系。 從以上的背景分析可以看出,數(shù)量積的概念既是本節(jié)課的重點(diǎn),也是難點(diǎn)。為了突破這一難點(diǎn),首先無論是在概念的引入還是應(yīng)用過程中,物理中“功”的實(shí)例都發(fā)揮了重要作用。其次,作為數(shù)量積概念延伸的性質(zhì)和運(yùn)算律,不僅能夠使學(xué)生更加全面深刻地理解概念,同時(shí)也是進(jìn)行相關(guān)計(jì)算和判斷的理論依據(jù)。最后,無論是數(shù)量積的性質(zhì)還是運(yùn)算律,都希望學(xué)生在類比的基礎(chǔ)上,通過主動(dòng)探究來發(fā)現(xiàn),因而對培養(yǎng)學(xué)生的抽象概括能力、推理論證能力和類比思想都無疑是很好的載體。 綜上所述,結(jié)合“課標(biāo)”要求和學(xué)生實(shí)際,我將本節(jié)課的教學(xué)目標(biāo)定為:

5、1、了解平面向量數(shù)量積的物理背景,理解數(shù)量積的含義及其物理意義; 2、體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的性質(zhì)和運(yùn)算律, 并能運(yùn)用性質(zhì)和運(yùn)算律進(jìn)行相關(guān)的運(yùn)算和判斷; 3、體會(huì)類比的數(shù)學(xué)思想和方法,進(jìn)一步培養(yǎng)學(xué)生抽象概括、推理論證的能力。 三、課堂結(jié)構(gòu)設(shè)計(jì) 本節(jié)課從總體上講是一節(jié)概念教學(xué),依據(jù)數(shù)學(xué)課程改革應(yīng)關(guān)注知識的發(fā)生和發(fā)展過程的理念,結(jié)合本節(jié)課的知識的邏輯關(guān)系,我按照以下順序安排本節(jié)課的教學(xué): 即先從數(shù)學(xué)和物理兩個(gè)角度創(chuàng)設(shè)問題情景,通過歸納和抽象得到數(shù)量積的概念,在此基礎(chǔ)上研究數(shù)量積的性質(zhì)和運(yùn)算律,使學(xué)生進(jìn)一步加深對概念的理解,然后通過例題和練習(xí)使學(xué)生鞏

6、固概念,加深印象,最后通過課堂小結(jié)提高學(xué)生認(rèn)識,形成知識體系。 四、???????? 教學(xué)媒體設(shè)計(jì) 和“大綱”教材相比,“課標(biāo)”教材在本節(jié)課的內(nèi)容安排上,雖然將向量的夾角在“平面向量基本定理”一節(jié)提前做了介紹,但卻將原來分兩節(jié)課完成的內(nèi)容合并成一節(jié),相比較而言本節(jié)課的教學(xué)任務(wù)加重了許多。為了保證教學(xué)任務(wù)的完成,順利實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),考慮到本節(jié)課的實(shí)際特點(diǎn),在教學(xué)媒體的使用上,我的設(shè)想主要有以下兩點(diǎn): 1、制作高效實(shí)用的電腦多媒體課件,主要作用是改變相關(guān)內(nèi)容的呈現(xiàn)方式,以此來節(jié)約課時(shí),增加課堂容量。 2、設(shè)計(jì)科學(xué)合理的板書(見下),一方面使學(xué)生加深對主要知識的印象,另一方面使學(xué)生

7、清楚本節(jié)內(nèi)容知識間的邏輯關(guān)系,形成知識網(wǎng)絡(luò)。 平面向量數(shù)量積的物理背景及其含義 一、? 數(shù)量積的概念????????????? 二、數(shù)量積的性質(zhì)?????????? 四、應(yīng)用與提高 1、? 概念:????????????????????????????????????????????? 例1: 2、? 概念強(qiáng)調(diào) (1)記法??? ??????????????????????????????例2: (2)“規(guī)定”?? 三、數(shù)量積的運(yùn)算律????????? 例3: 3、幾何意義: 4、物理意義: 五、???????? 教學(xué)過程設(shè)計(jì) 課標(biāo)指出:數(shù)學(xué)教學(xué)過程是教師

8、引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)活動(dòng)的過程,是教師和學(xué)生間互動(dòng)的過程,是師生共同發(fā)展的過程。為有序、有效地進(jìn)行教學(xué),本節(jié)課我主要安排以下六個(gè)活動(dòng): 活動(dòng)一:創(chuàng)設(shè)問題情景,激發(fā)學(xué)習(xí)興趣 正如教材主編寄語所言,數(shù)學(xué)是自然的,而不是強(qiáng)加于人的。平面向量的數(shù)量積這一重要概念,和向量的線性運(yùn)算一樣,也有其數(shù)學(xué)背景和物理背景,為了體現(xiàn)這一點(diǎn),我設(shè)計(jì)以下幾個(gè)問題: 問題1:我們已經(jīng)研究了向量的哪些運(yùn)算?這些運(yùn)算的結(jié)果是什么? 問題2:我們是怎么引入向量的加法運(yùn)算的?我們又是按照怎樣的順序研究了這種運(yùn)算的? 期望學(xué)生回答:物理模型→概念→性質(zhì)→運(yùn)算律→應(yīng)用 問題3:如圖所示,一物體在力F的作用下產(chǎn)生位移S,

9、 (1)力F所做的功W=???? 。 (2)請同學(xué)們分析這個(gè)公式的特點(diǎn): W(功)是? 量, F(力)是?? 量, S(位移)是?? 量, α是???????????? 。 問題1的設(shè)計(jì)意圖在于使學(xué)生了解數(shù)量積的數(shù)學(xué)背景,讓學(xué)生明白本節(jié)課所要研究的數(shù)量積與向量的加法、減法及數(shù)乘一樣,都是向量的運(yùn)算,但與向量的線性運(yùn)算相比,數(shù)量積運(yùn)算又有其特殊性,那就是其結(jié)果發(fā)生了本質(zhì)的變化。 問題2的設(shè)計(jì)意圖在于使學(xué)生在與向量加法類比的基礎(chǔ)上明了本節(jié)課的研究方法和順序,為教學(xué)活動(dòng)指明方向。 問題3的設(shè)計(jì)意圖在于使學(xué)生了解數(shù)量積的物理背景,讓學(xué)生知道,我們研究數(shù)量積絕不僅僅是為了數(shù)學(xué)自身

10、的完善,而是有其客觀背景和現(xiàn)實(shí)意義的,從而產(chǎn)生了進(jìn)一步研究這種新運(yùn)算的愿望。同時(shí),也為抽象數(shù)量積的概念做好鋪墊。 活動(dòng)二:探究數(shù)量積的概念 1、概念的抽象 在分析“功”的計(jì)算公式的基礎(chǔ)上提出問題4 問題4:你能用文字語言來表述功的計(jì)算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結(jié)果又該如何表述? 學(xué)生通過思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個(gè)向量的大小及其夾角余弦的乘積。這樣,學(xué)生事實(shí)上已經(jīng)得到數(shù)量積概念的文字表述了,在此基礎(chǔ)上,我進(jìn)一步明晰數(shù)量積的概念。 2、概念的明晰 已知兩個(gè)非零向量與,它們的夾角為,我們把數(shù)量 ︱︱·︱︱cos叫做與的數(shù)量積(

11、或內(nèi)積),記作:·,即:·= ︱︱·︱︱cos 在強(qiáng)調(diào)記法和“規(guī)定”后? ,為了讓學(xué)生進(jìn)一步認(rèn)識這一概念,提出問題5 問題5:向量的數(shù)量積運(yùn)算與線性運(yùn)算的結(jié)果有什么不同?影響數(shù)量積大小的因素有哪些?并完成下表: 角的范圍 0°≤<90° =90° 0°<≤180° ·的符號 通過此環(huán)節(jié)不僅使學(xué)生認(rèn)識到數(shù)量積的結(jié)果與線性運(yùn)算的結(jié)果有著本質(zhì)的不同,而且認(rèn)識到向量的夾角是決定數(shù)量積結(jié)果的重要因素,為下面更好地理解數(shù)量積的性質(zhì)和運(yùn)算律做好鋪墊。 3、探究數(shù)量積的幾何意義 這個(gè)問題教材是這樣安排的:在給出向量數(shù)量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了

12、證明運(yùn)算律的第三條才直接以結(jié)論的形式呈現(xiàn)給學(xué)生,我覺得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學(xué)生自己歸納得出,所以做了調(diào)整。為此,我首先給出給出向量投影的概念,然后提出問題5。 如圖,我們把││cos(││cos)叫做向量在方向上(在方向上)的投影,記做:OB1=││cos 問題6:數(shù)量積的幾何意義是什么? 這樣做不僅讓學(xué)生從“形”的角度重新認(rèn)識數(shù)量積的概念,從中體會(huì)數(shù)量積與向量投影的關(guān)系,同時(shí)也更符合知識的連貫性,而且也節(jié)約了課時(shí)。 4、研究數(shù)量積的物理意義 數(shù)量積的概念是由物理中功的概念引出的,學(xué)習(xí)了數(shù)量積的概念后,學(xué)生就會(huì)明白功的數(shù)學(xué)本質(zhì)就是力與位移

13、的數(shù)量積。為此,我設(shè)計(jì)以下問題 一方面使學(xué)生嘗試計(jì)算數(shù)量積,另一方面使學(xué)生理解數(shù)量積的物理意義,同時(shí)也為數(shù)量積的性質(zhì)埋下伏筆。 問題7: (1) 請同學(xué)們用一句話來概括功的數(shù)學(xué)本質(zhì):功是力與位移的數(shù)量積 。 (2)嘗試練習(xí):一物體質(zhì)量是10千克,分別做以下運(yùn)動(dòng): ①、在水平面上位移為10米; ②、豎直下降10米; ③、豎直向上提升10米; ④、沿傾角為30度的斜面向上運(yùn)動(dòng)10米; 分別求重力做的功。 活動(dòng)三:探究數(shù)量積的運(yùn)算性質(zhì) 1、性質(zhì)的發(fā)現(xiàn) 教材中關(guān)于數(shù)量積的三條性質(zhì)是以探究的形式出現(xiàn)的,為了很好地完成這一探究活動(dòng),在完成上述練習(xí)后,我不失時(shí)機(jī)地提出問題8: (1)

14、將嘗試練習(xí)中的① ② ③的結(jié)論推廣到一般向量,你能得到哪些結(jié)論? (2)比較︱·︱與︱︱×︱︱的大小,你有什么結(jié)論? 在學(xué)生討論交流的基礎(chǔ)上,教師進(jìn)一步明晰數(shù)量積的性質(zhì),然后再由學(xué)生利用數(shù)量積的定義給予證明,完成探究活動(dòng)。 2、明晰數(shù)量積的性質(zhì) 3、性質(zhì)的證明 這樣設(shè)計(jì)體現(xiàn)了教師只是教學(xué)活動(dòng)的引領(lǐng)者,而學(xué)生才是學(xué)習(xí)活動(dòng)的主體,讓學(xué)生成為學(xué)習(xí)的研究者,不斷地體驗(yàn)到成功的喜悅,激發(fā)學(xué)生參與學(xué)習(xí)活動(dòng)的熱情,不僅使學(xué)生獲得了知識,更培養(yǎng)了學(xué)生由特殊到一般的思維品質(zhì)。 活動(dòng)四:探究數(shù)量積的運(yùn)算律 1、運(yùn)算律的發(fā)現(xiàn) 關(guān)于運(yùn)算律,教材仍然是以探究的形式出現(xiàn),為此,首先提出問題9 問

15、題9:我們學(xué)過了實(shí)數(shù)乘法的哪些運(yùn)算律?這些運(yùn)算律對向量是否也適用? 通過此問題主要是想使學(xué)生在類比的基礎(chǔ)上,猜測提出數(shù)量積的運(yùn)算律。 學(xué)生可能會(huì)提出以下猜測: ①·= ·? ???②(·)= (·)? ③( + )· =· + · 猜測①的正確性是顯而易見的。 關(guān)于猜測②的正確性,我提示學(xué)生思考下面的問題: 猜測②的左右兩邊的結(jié)果各是什么?它們一定相等嗎? 學(xué)生通過討論不難發(fā)現(xiàn),猜測②是不正確的。 這時(shí)教師在肯定猜測③的基礎(chǔ)上明晰數(shù)量積的運(yùn)算律: 2、明晰數(shù)量積的運(yùn)算律 3、證明運(yùn)算律 學(xué)生獨(dú)立證明運(yùn)算律(2) 我把運(yùn)算運(yùn)算律(2)的證明交給學(xué)生完成,在證明時(shí),學(xué)生可

16、能只考慮到λ>0的情況,為了幫助學(xué)生完善證明,提出以下問題: 當(dāng)λ<0時(shí),向量與λ,與λ的方向 的關(guān)系如何?此時(shí),向量λ與及與λ的夾角與向量與的夾角相等嗎? 師生共同證明運(yùn)算律(3) 運(yùn)算律(3)的證明對學(xué)生來說是比較困難的,為了節(jié)約課時(shí),這個(gè)證明由師生共同完成,我想這也是教材的本意。 在這個(gè)環(huán)節(jié)中,我仍然是首先為學(xué)生創(chuàng)設(shè)情景,讓學(xué)生在類比的基礎(chǔ)上進(jìn)行猜想歸納,然后教師明晰結(jié)論,最后再完成證明,這樣做不僅培養(yǎng)了學(xué)生推理論證的能力,同時(shí)也增強(qiáng)了學(xué)生類比創(chuàng)新的意識,將知識的獲得和能力的培養(yǎng)有機(jī)的結(jié)合在一起。 活動(dòng)五:應(yīng)用與提高 例1、(師生共同完成)已知︱︱=6,︱︱=4, 與的夾角為

17、60°,求 (+2 )·(-3),并思考此運(yùn)算過程類似于哪種運(yùn)算? 例2、(學(xué)生獨(dú)立完成)對任意向量 ,b是否有以下結(jié)論: (1)(+)2=2+2·+2 (2)(+ )·(-)= 2—2 例3、(師生共同完成)已知︱︱=3,︱︱=4, 且 與不共線,k為何值時(shí),向量+k 與-k互相垂直?并思考:通過本題你有什么收獲? 本節(jié)教材共安排了四道例題,我根據(jù)學(xué)生實(shí)際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數(shù)量積的性質(zhì)和運(yùn)算律的綜合應(yīng)用,教學(xué)時(shí),我重點(diǎn)從對運(yùn)算原理的分析和運(yùn)算過程的規(guī)范書寫兩個(gè)方面加強(qiáng)示范。完成計(jì)算后,進(jìn)一步提出問題:此運(yùn)算過程類似于哪種運(yùn)算?目的是想讓學(xué)生在類

18、比多項(xiàng)式乘法的基礎(chǔ)上自己猜測提出例2給出的兩個(gè)公式,再由學(xué)生獨(dú)立完成證明,一方面這并不困難,另一方面培養(yǎng)了學(xué)生通過類比這一思維模式達(dá)到創(chuàng)新的目的。例3的主要作用是,在繼續(xù)鞏固性質(zhì)和運(yùn)算律的同時(shí),教給學(xué)生如何利用數(shù)量積來判斷兩個(gè)向量的垂直,是平面向量數(shù)量積的基本應(yīng)用之一,教學(xué)時(shí)重點(diǎn)給學(xué)生分析數(shù)與形的轉(zhuǎn)化原理。 為了使學(xué)生更好的理解數(shù)量積的含義,熟練掌握性質(zhì)及運(yùn)算律,并能夠應(yīng)用數(shù)量積解決有關(guān)問題,再安排如下練習(xí): 1、? ?下列兩個(gè)命題正確嗎?為什么? ①、若≠0,則對任一非零向量,有·≠0. ②、若≠0,·=·,則=. 2、已知△ABC中,=, =,當(dāng)· <0或·=0時(shí),試判斷△ABC

19、的形狀。 安排練習(xí)1的主要目的是,使學(xué)生在與實(shí)數(shù)乘法比較的基礎(chǔ)上全面認(rèn)識數(shù)量積這一重要運(yùn)算, 通過練習(xí)2使學(xué)生學(xué)會(huì)用數(shù)量積表示兩個(gè)向量的夾角,進(jìn)一步感受數(shù)量積的應(yīng)用價(jià)值。 活動(dòng)六:小結(jié)提升與作業(yè)布置 1、本節(jié)課我們學(xué)習(xí)的主要內(nèi)容是什么? 2、平面向量數(shù)量積的兩個(gè)基本應(yīng)用是什么? 3、我們是按照怎樣的思維模式進(jìn)行概念的歸納和性質(zhì)的探究?在運(yùn)算律的探究過程中,滲透了哪些數(shù)學(xué)思想? 4、類比向量的線性運(yùn)算,我們還應(yīng)該怎樣研究數(shù)量積? 通過上述問題,使學(xué)生不僅對本節(jié)課的知識、技能及方法有了更加全面深刻的認(rèn)識,同時(shí)也為下 一節(jié)做好鋪墊,繼續(xù)激發(fā)學(xué)生的求知欲。 布置作業(yè): 1、課本P

20、121習(xí)題2.4A組1、2、3。 2、拓展與提高: 已知與都是非零向量,且+3 與7 -5垂直,-4與 7-2垂直求與的夾角。 在這個(gè)環(huán)節(jié)中,我首先考慮檢測全體學(xué)生是否都達(dá)到了“課標(biāo)”的基本要求,因此安排了一組教材中的習(xí)題,目的是讓所有的學(xué)生繼續(xù)加深對數(shù)量積概念的理解和應(yīng)用,為后續(xù)學(xué)習(xí)打好基礎(chǔ)。其次,為了能讓不同的學(xué)生在數(shù)學(xué)領(lǐng)域得到不同的發(fā)展,我又安排了一道有一定難度的問題供學(xué)有余力的同學(xué)選做。 六、教學(xué)評價(jià)設(shè)計(jì) 評價(jià)方式的轉(zhuǎn)變是新課程改革的一大亮點(diǎn),課標(biāo)指出:相對于結(jié)果,過程更能反映每個(gè)學(xué)生的發(fā)展變化,體現(xiàn)出學(xué)生成長的歷程。因此,數(shù)學(xué)學(xué)習(xí)的評價(jià)既要重視結(jié)果,也要重視過程。結(jié)合“課標(biāo)”對數(shù)學(xué)學(xué)習(xí)的評價(jià)建議,對本節(jié)課的教學(xué)我主要通過以下幾種方式進(jìn)行: 1、 通過與學(xué)生的問答交流,發(fā)現(xiàn)其思維過程,在鼓勵(lì)的基礎(chǔ)上,糾正偏差,并對其進(jìn)行定 性的評價(jià)。 2、在學(xué)生討論、交流、協(xié)作時(shí),教師通過觀察,就個(gè)別或整體參與活動(dòng)的態(tài)度和表現(xiàn)做出評價(jià),以此來調(diào)動(dòng)學(xué)生參與活動(dòng)的積極性。 3、 通過練習(xí)來檢驗(yàn)學(xué)生學(xué)習(xí)的效果,并在講評中,肯定優(yōu)點(diǎn),指出不足。 4、 通過作業(yè),反饋信息,再次對本節(jié)課做出評價(jià),以便查漏補(bǔ)缺。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!