《2018年高中數(shù)學(xué) 第二章 變化率與導(dǎo)數(shù) 2.5 簡(jiǎn)單復(fù)合函數(shù)的求導(dǎo)法則課件3 北師大版選修2-2.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018年高中數(shù)學(xué) 第二章 變化率與導(dǎo)數(shù) 2.5 簡(jiǎn)單復(fù)合函數(shù)的求導(dǎo)法則課件3 北師大版選修2-2.ppt(13頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2.5 簡(jiǎn)單復(fù)合函數(shù)的 求導(dǎo)法則, 導(dǎo)數(shù)的加減法法則:, 導(dǎo)數(shù)的乘除法法則:,引例,一艘油輪發(fā)生泄漏事故,泄出的原油在海面上形 成一個(gè)圓形油膜,其面積 是半徑 的函數(shù):,油膜半徑 隨著時(shí)間 的增加而擴(kuò)大,其函數(shù)關(guān) 系為:,問(wèn):油膜面積 關(guān)于時(shí)間 的瞬時(shí)變化率是多 少?,分析:,油膜面積 關(guān)于時(shí)間 的新函數(shù):,由于,所以由導(dǎo)數(shù)的運(yùn)算法則可得:,,,概括,一般地,對(duì)函數(shù) 和 , 給定 的一個(gè)值,可得 的值,進(jìn)而確定 的值, 這就確定了新函數(shù) ,它是由 和 復(fù)合而成的,我們稱之為復(fù)合函 數(shù),其中 是中間變量。,復(fù)合函數(shù) 的導(dǎo)數(shù):,復(fù)合函數(shù)
2、 中,令 ,則,注意:,復(fù)合函數(shù)的中間變量可以是任何函數(shù),在高中 階段我們只討論 的情況。,推廣:,注意:不要寫(xiě)成 !,,對(duì)x求導(dǎo),,,對(duì) 求導(dǎo),利用復(fù)合函數(shù)的求導(dǎo)法則來(lái)求導(dǎo)數(shù)時(shí),首先要弄清復(fù)合關(guān)系,而選擇中間變量是復(fù)合函數(shù)求導(dǎo)的關(guān)鍵。,分析:,令 ,則函數(shù)是由 與 復(fù)合而成,由復(fù)合函數(shù)求導(dǎo)法則 可知:,解:,例1 求函數(shù) 的導(dǎo)數(shù)。,解:,令 ,則函數(shù)是由 與 復(fù)合而成,由復(fù)合函數(shù)求導(dǎo)法則 可知:,例2 求函數(shù) 的導(dǎo)數(shù)。,(1)首先要弄清復(fù)合關(guān)系,特別要注意中間變量;,(2)盡可能地將函數(shù)化簡(jiǎn),
3、然后再求導(dǎo);,(3)要注意復(fù)合函數(shù)求導(dǎo)法則與四則運(yùn)算的綜合 運(yùn)用;,(4)復(fù)合函數(shù)求導(dǎo)法則,常被稱為“鏈條法則”, 一環(huán)套一環(huán),缺一不可。,復(fù)合函數(shù)求導(dǎo)法則的注意問(wèn)題:,解:,令 ,由復(fù)合函數(shù)求導(dǎo)法則可 以求得:,,當(dāng) 時(shí),水面高度下降的速度是 。,解:,(1)函數(shù)是由 與 復(fù)合而成的,,由復(fù)合函數(shù)的求導(dǎo)法則知:,例4 求下列函數(shù)的導(dǎo)數(shù):,前面所求的都是具體的復(fù)合函數(shù)的導(dǎo)數(shù),而此題 中的對(duì)應(yīng)法則 f 是未知的,是抽象的復(fù)合函數(shù)。它們 的導(dǎo)數(shù)如何求得??,求下列函數(shù)的導(dǎo)數(shù):,動(dòng)手做一做,,關(guān)鍵:分清函數(shù)的復(fù)合關(guān)系,合理選定中間變量。, 復(fù)合函數(shù)求導(dǎo)公式:,利用復(fù)合函數(shù)的求導(dǎo)公式可以求抽象函數(shù)的導(dǎo)數(shù)。,對(duì)于抽象復(fù)合函數(shù)的求導(dǎo), 要從其形式上把握其結(jié)構(gòu)特征,找出中間變量;另外要充分運(yùn)用復(fù)合關(guān)系的求導(dǎo)法則。, 抽象復(fù)合函數(shù)的導(dǎo)數(shù):,