《定積分及其應用》PPT課件

上傳人:san****019 文檔編號:16064254 上傳時間:2020-09-17 格式:PPT 頁數(shù):67 大?。?,014.10KB
收藏 版權申訴 舉報 下載
《定積分及其應用》PPT課件_第1頁
第1頁 / 共67頁
《定積分及其應用》PPT課件_第2頁
第2頁 / 共67頁
《定積分及其應用》PPT課件_第3頁
第3頁 / 共67頁

下載文檔到電腦,查找使用更方便

14.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《《定積分及其應用》PPT課件》由會員分享,可在線閱讀,更多相關《《定積分及其應用》PPT課件(67頁珍藏版)》請在裝配圖網上搜索。

1、第五章 定積分及其應用,本章主題詞:曲邊梯形的面積、定積分、變上限的積分、牛頓-萊布尼茨公式、換元積分法、分部積分法、廣義積分。,,數(shù)學不僅在摧毀著物理科學中緊鎖的大門,而且正在侵入并搖撼著生物科學、心理學和社會科學。會有這樣一天,經濟的爭執(zhí)能夠用數(shù)學以一種沒有爭吵的方式來解決,現(xiàn)在想象這一天的到來不再是謊繆的了。 伽德納,Archimedes,第一節(jié) 定積分的概念與性質,實例1 (求曲邊梯形的面積),一、定積分問題的提出,用矩形面積近似取代曲邊梯形面積,,,,,,,,,,,,,,顯然:小矩形越多,矩形總面積越接近曲邊梯形面積,(四個小矩形),(九個小矩形),公元前二

2、百多年前的阿基米德就已會用此法求出許多不規(guī)則圖形的面積,阿基米德,,觀察下列演示過程,注意當分割加細時, 矩形面積和與曲邊梯形面積的關系,播放,觀察下列演示過程,注意當分割加細時, 矩形面積和與曲邊梯形面積的關系,觀察下列演示過程,注意當分割加細時, 矩形面積和與曲邊梯形面積的關系,觀察下列演示過程,注意當分割加細時, 矩形面積和與曲邊梯形面積的關系,觀察下列演示過程,注意當分割加細時, 矩形面積和與曲邊梯形面積的關系,觀察下列演示過程,注意當分割加細時, 矩形面積和與曲邊梯形面積的關系,觀察下列演示過程,注意當分割加細時, 矩形面積和與曲邊梯形面積的關系,觀察下列演示過程,注意當分割加細時,

3、 矩形面積和與曲邊梯形面積的關系,觀察下列演示過程,注意當分割加細時, 矩形面積和與曲邊梯形面積的關系,觀察下列演示過程,注意當分割加細時, 矩形面積和與曲邊梯形面積的關系,觀察下列演示過程,注意當分割加細時, 矩形面積和與曲邊梯形面積的關系,觀察下列演示過程,注意當分割加細時, 矩形面積和與曲邊梯形面積的關系,觀察下列演示過程,注意當分割加細時, 矩形面積和與曲邊梯形面積的關系,觀察下列演示過程,注意當分割加細時, 矩形面積和與曲邊梯形面積的關系,觀察下列演示過程,注意當分割加細時, 矩形面積和與曲邊梯形面積的關系,觀察下列演示過程,注意當分割加細時, 矩形面積和與曲邊梯形面積的關系,曲邊梯

4、形如圖所示:,(1)分割,(2)近似代替,,(3)求和,(4)取極限,曲邊梯形面積為,求曲邊梯形面積所用的方法步驟:,實例2 (求變速直線運動的路程),思路:把整段時間分割成若干小段,每小段上速度看作不變,求出各小段的路程再相加,便得到路程的近似值,最后通過對時間的無限細分過程求得路程的精確值,(1)分割,(3)求和,(4)取極限,(2)近似代替,二、定積分的定義,定義,記為,積分上限,積分下限,黎曼積分,積分和,注意:,則,則當,例1 利用定義計算定積分,解,曲邊梯形的面積,曲邊梯形的面積的負值,定積分的幾何意義,定理1,定理2,定積分存在定理(可積充分條件),三、定積分的性質,對定積分的補

5、充規(guī)定:,說明,在下面的性質中,假定定積分都存在,且不考慮積分上下限的大小,證明,(此性質可以推廣到有限多個函數(shù)作和的情況),性質1,證明,性質2,,,補充:不論 的相對位置如何, 上式總成立.,例 若,(定積分對于積分區(qū)間具有可加性),則,性質3,證明,性質4,性質5,性質5的推論:,證明,(1),(定積分不等式性質),證明,說明: 可積性是顯然的.,性質5的推論:,(絕對值不等式性質),解,令,于是,證明,(此性質可用于估計積分值的大致范圍),性質6,解,解,證明,由閉區(qū)間上連續(xù)函數(shù)的介值定理知,性質7(定積分中值定理),積分中值公式,使,即,積分中值公式的幾何解釋:,,,,解,由積分中值定理知有,使,(定積分第二中值定理 .),7,和,小 結,定積分的實質:特殊和式的極限,定積分的思想和方法:,求近似以直(不變)代曲(變),取極限,3定積分的性質,(注意估值性質、積分中值定理的應用),4典型問題,()估計積分值;,()不計算定積分比較積分大小,證,命題得證,所以可積必有界.,思考題,1、將和式極限:,2、表示成定積分.,思考題解答,1、原式,,,例,證明,利用對數(shù)的性質得,極限運算與對數(shù)運算換序得,故,練 習 題,練習題答案,練習題答案,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!