全自動顆粒包裝機的設計【細小顆粒物品全自動顆粒包裝機的設計】
全自動顆粒包裝機的設計【細小顆粒物品全自動顆粒包裝機的設計】,細小顆粒物品全自動顆粒包裝機的設計,全自動顆粒包裝機的設計【細小顆粒物品全自動顆粒包裝機的設計】,全自動,顆粒,裝機,設計,細小,物品
陜 西 科 技 大 學
畢業(yè)設計(論文)任務書
機電工程學院機械設計制造及其自動化專業(yè)機械03 班級 學生郭慶
題目: 全自動顆粒包裝機的設計
畢業(yè)設計(論文)從 2007 年 3 月 6 日起到 2007 年 6 月 15 日
課題的意義及培養(yǎng)目標:
畢業(yè)設計是在校學習課程中一個很重要的環(huán)節(jié),通過讓學生對全自動顆粒包裝機的設計,把學生在校所學的基礎(chǔ)知識和專業(yè)知識綜合地進行應用。使學生在學完全部理論課程和專業(yè)課程以后,進一步地鞏固和擴大專業(yè)知識,鍛煉學生實際動手能力。培養(yǎng)學生從接到一項設計課題開始到設計出完整的全套圖紙及設計說明書為止整個設計步驟的具體操作(收集資料、寫開題報告、進行方案比較并確定設計方案、設計總裝圖、部裝圖及零件圖、撰寫設計說明書),為學生畢業(yè)后的實際工作能力打下良好的基礎(chǔ)。
設計(論文)所需收集的原始數(shù)據(jù)與資料:
需收集與本課題同類型的塑料薄膜包裝機的有關(guān)數(shù)據(jù)和資料。如傳動系統(tǒng)、料缸結(jié)構(gòu)、及聚乙烯塑料薄膜的牽引系統(tǒng)、成型與墊封機構(gòu)(橫封與豎封)。1. 生產(chǎn)能力:35袋/分鐘;2. 包裝容量:5~25ml(連續(xù)可條);
3. 精度;4. 包裝材料厚度0.08~0.mm,寬度60~140mm?! ?
5. 外形尺寸應盡量小。
課題的主要任務(需附有技術(shù)指標分析):
該生主要負責以下幾部分工作:
1. 通過畢業(yè)實習,收集所需要的有關(guān)設計數(shù)據(jù)、資料。
2. 整理所收集的設計數(shù)據(jù)及資料,經(jīng)分析比較后確定自己的設計方案。
3. 方案確定后,進行參數(shù)設計計算。
4. 設計裝配圖和部裝圖。
5.設計零件圖?! ?
6.整理并打印設計說明書。
設計(論文)進度安排及完成的相關(guān)任務(以教學周為單位):
周 次
設計(論文)任務及要求
第1~4周
畢業(yè)實習,收集所需要的數(shù)據(jù)及資料
第5周
整理資料,經(jīng)分析比較后,確定設計方案
第6~7周
進行參數(shù)設計計算
第8~10周
進行總體裝配圖的設計
第11~12周
進行部裝圖的設計
第13~15周
進行零件圖的設計
第16~17周
整理并打印設計說明書
學生簽名: 日期:
指導教師: 日期:
教研室主任: 日期:
畢 業(yè) 論 文
題目: 全自動顆粒包裝機的設計
學 生: 郭 慶
學 號: 51403608
院 (系): 機電工程學院
專 業(yè):機械設計制造及其自動化
指導教師: 吳春英
200 年 月 日
3
全自動顆粒包裝機
全自動顆粒包裝機的設計
摘 要
本文主要介紹了一種包裝機械—自動顆粒包裝機的工作原理及其設計過程,對其傳動系統(tǒng)的參數(shù)進行計算和傳動部件的強度校核,對其整體外觀、箱體以及支架進行合理的改進。自動顆粒包裝機主要適合于包裝食品、茶葉、醫(yī)藥、化工等產(chǎn)品的松散狀、無粘性細小顆粒物品的小劑量自動包裝。其包裝材料為復合材料,在高溫下粘合。
本機主要有橫封機構(gòu)、縱封機構(gòu)、供料機構(gòu)、剪切機構(gòu)、傳動機構(gòu)及電器控制系統(tǒng)。在本次設計中,我們的主要任務是對其傳動系統(tǒng)的支架、整機的箱體進行改進,使其滿足設計要求,以達到所要求的生產(chǎn)效率。
本機的特點是能自動完成制袋,可調(diào)量杯計算、充填、打印日期、封合部位打口、記數(shù)等功能。本機還采用了無機調(diào)整制袋長度機構(gòu)和智能型商標定位裝置。
關(guān)鍵詞:工作原理,傳動機構(gòu),支架
Automatic Granular Packaging Machine
ABSTRACT
This article mainly introduces the principle and course of the design of the packing machinery (the type of DXDK40-II), and the author calculates the parameter of the transmission system, collates the drive parts and improves the appearance, the box and the bracket. This machine mainly packs the relaxed, small granule with out glutimesity in food、tea、medicine and chemical industry. The material is composite and agglutinated in high temperature.
This machine is mainly made up of the thwart and the vertical framework which encapsulate the edge of the bags, the framework which supply the materials、the transmission system and the electricity control system. The main task in this work is to improve the bracket in the transmission system and the box of the machine to meet the needs of the design and reach the efficiency we need.
It can make bags、adjust the measure of the measuring cup、filling、mimeograph the date、make the space in the enveloped parts and count automatically. It also can adjust the length of the bags and orient the position of the mark.
KEY WORDS: the principle of the work, transmission parts,the bracket
目 錄
摘 要 I
ABSTRACT II
1 前言 1
2 自動顆粒包裝機工作原理 2
2.1 機械部分 2
2.1.1 無級調(diào)速機構(gòu) 2
2.1.2 間隔齒輪及錐棍無級調(diào)整機構(gòu) 2
2.1.3 偏心鏈輪機構(gòu) 3
2.1.4 行星差動輪系 4
2.1.5 可調(diào)量杯機構(gòu)及量杯零件圖 5
2.2 電器部分 5
2.3 光電控制的簡要說明 5
3 總體方案設計 6
3.1 功能和應用范圍 6
3.2 工藝分析 6
3.3 機構(gòu)造型 7
4 運動參數(shù)的計算及傳動系統(tǒng)的設計 9
4.1 帶傳動的計算 9
4.2 鏈傳動設計 10
4.3 剪切部分齒輪傳動系統(tǒng) 11
4.4 錐齒輪的設計計算 15
4.5 料盤傳動部分 18
4.5.1 I-II 間的傳動 18
4.5.2 II-III 之間的傳動 21
4.6 隔板的設計、加工以及誤差 25
4.7 支架的設計及加工 26
5 機構(gòu)調(diào)整及事故處理方法 29
5.1 機構(gòu)本身故障 29
5.2 轉(zhuǎn)盤部位故障 29
5.3 注意事項 30
致 謝 32
參 考 文 獻 33
工業(yè)機器人在顆粒包裝機中的應用
摘要:機械手是機器人的手臂,它使機器人能彎屈、延伸和旋轉(zhuǎn),提供這些運動的是機械手的軸,亦是所謂的機械人的自由度機械手的軸使機械手在某一區(qū)域內(nèi)執(zhí)行任務,我們將這個區(qū)域為機器人的工作單元,該區(qū)域的大小與機械手的尺寸相對應,。由鏈、齒輪和滾珠絲杠組成的機械傳動鏈驅(qū)動著機器人的各軸。
機器人控制器是工作單元的核心。用于大多數(shù)機器人系統(tǒng)中的控制器代表現(xiàn)代電子學的水平,是更復雜的裝置,即它們可以使得微處理器操縱的。動力源是給機器人和機械手提供動力的單元。例如,如果機器人的機械手是由液壓和氣壓驅(qū)動的,控制信號便傳送到這些裝置。
關(guān)鍵詞:工業(yè)機器人,包裝機
工業(yè)機器人是在生產(chǎn)環(huán)境中用以提高生產(chǎn)效率的工具,它能做常規(guī)乏味的裝配線工作,或能做那些對于工人說是危險的工作,例如,第一代工業(yè)機器人是用來在核電站中更換核燃料棒,如果人去做這項工作,將會遭受有害放射線的輻射。工業(yè)機器人亦能工作在裝配線上將小元件裝配到一起,如將電子元件安放在電路印制板,這樣,工人就能從這項乏味的常規(guī)工作中解放出來。機器人也能按程序要求用來拆除炸彈,輔助殘疾人,在社會的很多應用場合下履行職能。
機器人可以認為是將手臂末端的工具、傳感器和手爪移到程序指定位置的一種機器。當機器人到達位置后,它將執(zhí)行某種任務。這些任務可以是焊接、密封、機器裝料、拆卸以及裝配工作。除了編程以及系統(tǒng)的開停之外,一般來說這些工作可以在無人干預下完成。
如下敘述的是機器人系統(tǒng)基本術(shù)語:
1。機器人是一個可編程、多功能的機器手,通過給要完成的不同任務編制各種動作,它可以移動零件、材料、工具以及特殊裝置。這個基本定義引導出后續(xù)斷落的其他定義,從而描繪出一個完整的機器人系統(tǒng)。
2。預編程位置點是機器人為完成工作而必須跟蹤的軌跡。在某些位置點上機器人將停下來做某些操作,如裝配零件、噴涂油漆或焊接。這些預編程點貯存再機器人的貯存器中,并為后續(xù)的連續(xù)操作所調(diào)用,而且這些預編程點像其他程序數(shù)據(jù)一樣,可在日后隨工作需要而變化。因而,這正是這種可編程序的特點,一個工業(yè)機器人很像一臺計算機,數(shù)據(jù)可在這里儲存、后續(xù)調(diào)用與編輯。
3。機械手是機器人的手臂,它使機器人能彎屈、延伸和旋轉(zhuǎn),提供這些運動的是機械手的軸,亦是所謂的機械人的自由度。一個機械人能有3~16軸,自由度一詞總是與機器人軸數(shù)相關(guān)。
4。工具和手爪不是機器人自身組成部分,但它們是安裝再機器人手臂末端的附件。這些連在機器人手臂末端的附件可使機器人抬起工件、點焊、刷漆、電弧焊、鉆孔、打毛刺以及根據(jù)機器人的要求去做各種各樣的工作。
5。機器人系統(tǒng)還可以控制機器人的工作單元,工作單元是機器人執(zhí)行任務所處的整體環(huán)境,該單元包括控制器、機械手、工作平臺、安全保護裝置或者傳輸裝置。所有這些為保證機器人完成自己任務而必須的裝置都包括在這一工作單元中。另外,來自外設的信號與機器人通訊,通知機器人何時裝配工件、取工件或放工件到傳輸裝置上。
機器人系統(tǒng)有三個基本部件:機械手、控制器和動力源。?
A.機械手
機械手做機器人系統(tǒng)中粗重工作。它包括兩個部分:機構(gòu)和附件,機械手也有聯(lián)結(jié)附件基座,表示一機器人基座與附件之間的連接情況。
機械手基座通常固定在工作區(qū)域的地基上,有時基座也可以移動,在這種情況下安裝在導軌或軌道上,允許機械手從一個位置移到另外一個位置。
正如前面所提到的那樣,附件從機器人基座上延伸出來,附件就是機器人的手臂,它可以是直動型,也可以是軸節(jié)型手臂,軸節(jié)型手臂也是大家所知的關(guān)節(jié)型手臂。
機械臂使機械手產(chǎn)生各軸的運動。這些軸連在一個安裝基座上,然后再連到托架上,托架確保機械手停留在某一位置。
在手臂的末端上,連接著手腕,手腕由輔助軸和手腕凸緣組成,手腕是讓機器人用戶在手腕凸緣上安裝不同工具來做不同種工作。
機械手的軸使機械手在某一區(qū)域內(nèi)執(zhí)行任務,我們將這個區(qū)域為機器人的工作單元,該區(qū)域的大小與機械手的尺寸相對應,。隨著機器人機械結(jié)構(gòu)尺寸的增加,工作單元的范圍也必須相應增加。
機械手的運動由執(zhí)行元件或驅(qū)動系統(tǒng)來控制。執(zhí)行元件或驅(qū)動系統(tǒng)允許各軸在工作單元內(nèi)運動。驅(qū)動系統(tǒng)可用電氣、液壓和氣壓動力,驅(qū)動系統(tǒng)所產(chǎn)生的動力經(jīng)機構(gòu)轉(zhuǎn)變?yōu)闄C械能,驅(qū)動系統(tǒng)與機械傳動鏈相匹配。由鏈、齒輪和滾珠絲杠組成的機械傳動鏈驅(qū)動著機器人的各軸。
B.控制器
機器人控制器是工作單元的核心。控制器儲存著預編程序供后續(xù)調(diào)用、控制外設,及于廠內(nèi)計算機進行通訊以滿足產(chǎn)品經(jīng)常更新的需要。
控制器用于控制機械手運動和在工作單元內(nèi)控制機械人外設。用戶可通過手持的示教盒將機械手運動的程序編入控制器。這些信息儲存在控制器的儲存器中以備后續(xù)調(diào)用,控制器存儲了機器人系統(tǒng)的所有編程數(shù)據(jù),它能存儲幾個不同的程序,并且所有這些程序均能編輯。
控制器要求能夠在工作單元內(nèi)與外設進行通信。例如控制器有一個輸入端,它能標識某個機加工操作何時完成。當該加工循環(huán)完成后,輸入端接通,告訴控制器定位機械手以便能抓取以加工工件,隨后,機械手抓取一未加工件,將其放置在機床上。接著,控制器給機床發(fā)出開始加工的信號。
控制器可以由根據(jù)事件順序而步進的機械式輪鼓組成,這種類型的控制器可用在非常簡單的機械系統(tǒng)中。用于大多數(shù)機器人系統(tǒng)中的控制器代表現(xiàn)代電子學的水平,是更復雜的裝置,即它們可以使得微處理器操縱的。這些微處理器可以是8位,16位或32位處理器。它們可以使得控制器在操作過程中顯得非常柔性??刂破髂芡ㄟ^通信線發(fā)送電信號,使它能于機械手各軸交流信息,在機器人的機械手和控制器之間的雙向交流信息可以保持系統(tǒng)操作和位置經(jīng)常更新,控制器也能控制安裝在機器人手腕上的任何工具。
控制器也有與廠內(nèi)各計算機進行通信的任務,這種通信聯(lián)系使機器人成為計算機輔助制造系統(tǒng)的一個組成部分。
存儲器?;谖⑻幚砥鞯南到y(tǒng)運行時要與固態(tài)的存儲裝置相連,這些存儲裝置可以是磁泡,隨機存儲器、軟盤、磁帶等。每種記憶存儲裝置均能貯存、編輯信息以備后續(xù)調(diào)用和編輯。
C.動力源
動力源是給機器人和機械手提供動力的單元。傳給機器人系統(tǒng)的動力源有兩種,一種是用于控制器的交流電,另一種是用于驅(qū)動機械手各軸的動力源。例如,如果機器人的機械手是由液壓和氣壓驅(qū)動的,控制信號便傳送到這些裝置
The Function of Industrial Robot in the Automatic Granular Packaging Machine
ABSTRACT:The industrial robot is a used in the manufacturing environment to increase productivity. It can be used to do routine and tesious assembly line jobs, or it can perform jobs that might be hazardous to the human worker .For example , one of the industrial robots was used to replace the nuclear fuel rods in nuclear power plants.
The basic terminology of robotic systems is introduced in the following. The robotic system has three basic components: the manipulator, the controller, and the power source.A. Manipulator The controller in the robotic system is the heart of the operation .The controller can be made from mechanically operated drums that step through a sequence of events.The controller is also required to communicate with periphral equipment within the work cell. For example, the controller has an input line that identifies when a machining operation is completed.
KEY WORDS: industrial robot , Packaging Machine
The industrial robot is a used in the manufacturing environment to increase productivity. It can be used to do routine and tesious assembly line jobs, or it can perform jobs that might be hazardous to the human worker .For example , one of the industrial robots was used to replace the nuclear fuel rods in nuclear power plants. A humsn doing this job might be exposed to harmful amounts of radiation .The industrial robot can also operate on the assembly line, putting together small components, such as placing electronic components on a printed circuit board. Thus, the human worker can be relieved of the routine operation of this tedious task.. Robots can also be programmed to defuse bombs, to serve the handicapped, and to perform functions in numerous in numerous applications in our society.
The robot can be thought of as a machine that will move an end-of-arm tool, sensor, and/or gripper to a preprogrammed location. When the robot arrives at this location, it will perform some sort of task. This task could be welding, sealing, machine loading, machine unloading,or a host od assembly jobs. Generally, this work can be accomplished without the involvement of a human being, except for programming and for turning the system on and off.
The basic terminology of robotic systems is introduced in the following:
1.A robot is a reprogrammable, multifunctional manipulator designed to move parts, materials, tools, or special devices through variable programmed motions for the performance of a variety of different task. This basic definition leads to other definitions, presented in the following paragraphs, that give a complete picture of a robotic system.
2. Preprogrammed locations are paths that the robot must follow to accomplish work. At some of these locations, the robot will stop and perform some opertion ,such as assembly of parts, spray painting, or welding. These preprogrammed locations are stored in the robot’s memory and are recalled later for continuous poeration. Furthermore, these preprogrammed locations, as well as other program data, can be changed later as the work requirements change. Thus, with regard to this programming feature, an industrial robot is very much like a computer, where data can be stored and later recalled and edited.
3. The manipulator is the arm of the robot. It allows the robot to bend, and twist. This movement is provided by the manipulator’s axes, also called the degrees of freedom of the robot. A robot can have 3 to 16 axes. The term degrees of freedom will always relate to the number of axes found on robot.
4.The tooling and grippers are not part of the robotic system itself; rather, they are attachments that fit on the end of the robot’s arm. These attachments connected to the end of the robot’s arm allow the robot to lift parts, s pot-weld, paint. arc-weld, drill, deburr, and do a variety of tasks, depending on what is required of the robot.
5.The robotic system can also control the work cell of the operating robot. The work cell of the robot is the total environment in which the robot must perform its task. Included within this cell may be the controller ,the robot manipulator, a work table, safety features, or a conveyor. All the equipment that is required in order for the robot to do its job is included in the work cell. In addition ,signals from outside devices can communicate with the robot in order to tell the robot when it should assemble parts, pick up parts, or unload parts to a conveyor.
The robotic system has three basic components: the manipulator, the controller, and the power source.A. Manipulator
The manipulator, which does the physical work of the robotic system, consists of two sections: the mechanical section and the attached appendage. The manipulator also has a base to which the appendages are attached .
The base of the manipulator is usually fixed to the work area. Sometimes, though, the base may be movable. In this case, the base attached to either a rail or a track ,allowing the manipulator to be moved from one location to anther.
As, mentioned previously, the appendage extends from the base of the robot. The appendage is the arm of the robot. It can be either a straight, movable arm or a jointed arm. The jointed arm is also known as an articulated arm.
The appendages of the robot manipulator give the manipulator its various axes of motion .These axes are attached to a fixed base, which ,in turn, is secured to a mounting .This mounting ensures that the manipulator will remain in one location.
At the end of the arm, a wrist is connected. The wrist is made up of additional axes and a wrist flange. The wrist flange allows the robot user to connect different tooling to the wrist for different jobs.
The manipulator’s axes allow it to perform work within a certain area. This area is called the work cell of the robot, and its size corresponds to the size of the manipulator.Fig21-2 illustrates the work cell of a typical assembly robot. As the robot’s physical size increases, the size of the work cell must also increase.
The movement of the manipulator is controlled by actuators, or drive system. The actuators, or drive system, allows the various axes to move within the work cell. The drive system can use electric, hydraulic, r pneumatic power. The energy developed by the drive system is converted to mechanical power by various mechanical drive systems. The drive systems are coupled through mechanical linkages. These linkages, in turn, drive the different axes of the robot. The mechanical linkages may be composed of chains , gears, and ball screws.
B.Controller
The controller in the robotic system is the heart of the operation .The controller stores preprogrammed information for later recall, controls peripheral devices, and communicates with computers within the plant for constant updates in production.
The controller is used to control the robot manipulator’s movements as well as to control peripheral components within the work cell. The user can program the movements of the manipulator into the controller through the use of a hand-held teach pendant. This information is stored in the memory of the controller for later recall. The controller stores all program data for the robotic system .It can store several different programs, and of these programs can be edited.
The controller is also required to communicate with periphral equipment within the work cell. For example, the controller has an input line that identifies when a machining operation is completed. When the machine cycle is completed ,the input line turns on, telling the controller to position the manipulator so that it can pick up the finished part. Then, a new part is picked up by the manipulator and placed into the machine .Next, the controller signals the machine to start operation.
The controller can be made from mechanically operated drums that step through a sequence of events. This type of controller operates with a very simple robotic system .The controllers found on the majority of robotic systems are more complex devices and represent state-of-the-art electronics. That is ,they are microprocessor-operated. These microprocessors are either 8-bit,16bit,or 32-bit processors. This power allows the controller to be very flexible in its operation.
The controller can send electric signals over communication lines that allow it to talk with the various axes of the manipulator. This two-way communication between the robot manipulator and the controller maintains a constant update of the location and the operation of the system .The controller also controls any tooling placed on the end of the robot’s wrist.
The controller also has the job of communicating with the different plant computers. The communication link establishes the robot as part of a computer-assisted manufacruring(CAM)system.
As the basic definition stated, the robot is a reprogrammable, multifunctional manipulator. Therefore, the controller must contain some type of memory storage. The microprocessor-based systems operate in conjunction with solid-state memory devices. These memory devices may be magnetic bubbles, random-access memory, floppy disks, or magnetic tape. Each memory storage device stores program information for later recall or for editing.
C.Power supply
The power supply is the unit that supplies power to the controller and the manipulator. Two types of power are delivered to the robotic system. One type of power is the AC power for operation of the controller. The other type of power is used for driving the various axes of the manipulator. for example ,if the robot manipulator is controlled by hydraulic or pneumatic drives, control signals are sent to these devices, causing motion of the robot.
For each robotic system, power is required to operate the manipulator. This power can be developed from either a hydraulic power source, a pneumatic power source, or anelectric power source. These power sources are part of the total components of the robotic work cell.
收藏