概率論與數(shù)理統(tǒng)計(jì):第3章連續(xù)型隨機(jī)變量及其分布4

上傳人:努力****83 文檔編號(hào):240052626 上傳時(shí)間:2024-03-13 格式:PPT 頁(yè)數(shù):33 大?。?MB
收藏 版權(quán)申訴 舉報(bào) 下載
概率論與數(shù)理統(tǒng)計(jì):第3章連續(xù)型隨機(jī)變量及其分布4_第1頁(yè)
第1頁(yè) / 共33頁(yè)
概率論與數(shù)理統(tǒng)計(jì):第3章連續(xù)型隨機(jī)變量及其分布4_第2頁(yè)
第2頁(yè) / 共33頁(yè)
概率論與數(shù)理統(tǒng)計(jì):第3章連續(xù)型隨機(jī)變量及其分布4_第3頁(yè)
第3頁(yè) / 共33頁(yè)

下載文檔到電腦,查找使用更方便

30 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《概率論與數(shù)理統(tǒng)計(jì):第3章連續(xù)型隨機(jī)變量及其分布4》由會(huì)員分享,可在線閱讀,更多相關(guān)《概率論與數(shù)理統(tǒng)計(jì):第3章連續(xù)型隨機(jī)變量及其分布4(33頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、3.6隨機(jī)變量的函數(shù)及其分布隨機(jī)變量的函數(shù)及其分布在實(shí)際問(wèn)題中,往往會(huì)遇到這樣的問(wèn)題:已知在實(shí)際問(wèn)題中,往往會(huì)遇到這樣的問(wèn)題:已知一個(gè)隨機(jī)變量的分布,要求其函數(shù)的分布一個(gè)隨機(jī)變量的分布,要求其函數(shù)的分布(假定此函假定此函數(shù)也是一個(gè)隨機(jī)變量數(shù)也是一個(gè)隨機(jī)變量)。對(duì)這類問(wèn)題的解決方法。對(duì)這類問(wèn)題的解決方法,我我們希望通過(guò)已知的們希望通過(guò)已知的的分布來(lái)求出隨機(jī)變量函數(shù)的分布來(lái)求出隨機(jī)變量函數(shù)的分布。的分布。一、一維隨機(jī)變量的函數(shù)及其分布一、一維隨機(jī)變量的函數(shù)及其分布下面我們給出求下面我們給出求的分布函數(shù)和密度函的分布函數(shù)和密度函數(shù)的一般步驟:數(shù)的一般步驟:(1)由)由的值域的值域確定確定的值域的值域

2、。(2)對(duì)任意一個(gè))對(duì)任意一個(gè),求出,求出,即,即其中其中是實(shí)數(shù)軸上的某個(gè)集合。是實(shí)數(shù)軸上的某個(gè)集合。(3)按分布函數(shù)的性質(zhì)寫(xiě)出)按分布函數(shù)的性質(zhì)寫(xiě)出;(4)對(duì)對(duì) 求導(dǎo)數(shù)得到求導(dǎo)數(shù)得到,即,即 例例1設(shè)設(shè)服從服從,求,求的分布函數(shù)和的分布函數(shù)和密度函數(shù)。密度函數(shù)。解解的取值范圍為的取值范圍為,且,且(1)當(dāng))當(dāng)時(shí),時(shí),(2)當(dāng))當(dāng)時(shí),時(shí),(3)當(dāng))當(dāng)時(shí),時(shí),所以,所以,分布函數(shù)為分布函數(shù)為所以,所以,密度函數(shù)為密度函數(shù)為例例2 設(shè)設(shè),求,求的密度函數(shù)的密度函數(shù)。解解隨機(jī)變量隨機(jī)變量的密度函數(shù)為的密度函數(shù)為隨機(jī)變量隨機(jī)變量的取值范圍為的取值范圍為,(1)當(dāng))當(dāng)時(shí),時(shí),(2)當(dāng))當(dāng)時(shí),時(shí),因此,因

3、此,的分布函數(shù)為的分布函數(shù)為所以,所以,的密度函數(shù)為的密度函數(shù)為例例3已知已知的密度函數(shù)為的密度函數(shù)為求求的密度函數(shù)。的密度函數(shù)。解解的值域?yàn)榈闹涤驗(yàn)?,因此?duì)任意一個(gè),因此對(duì)任意一個(gè),有,有所以,所以,的密度函數(shù)為的密度函數(shù)為如果如果是一個(gè)單調(diào)且有一階連續(xù)導(dǎo)數(shù)的函數(shù),是一個(gè)單調(diào)且有一階連續(xù)導(dǎo)數(shù)的函數(shù),則隨機(jī)變量的函數(shù)則隨機(jī)變量的函數(shù)的密度函數(shù)有如下性質(zhì):的密度函數(shù)有如下性質(zhì):設(shè)連續(xù)型隨機(jī)變量設(shè)連續(xù)型隨機(jī)變量的密度函數(shù)為的密度函數(shù)為,是一個(gè)單調(diào)函數(shù)且具有一階連續(xù)導(dǎo)數(shù),是一個(gè)單調(diào)函數(shù)且具有一階連續(xù)導(dǎo)數(shù),是是的反函數(shù),則隨機(jī)變量的函數(shù)的反函數(shù),則隨機(jī)變量的函數(shù)的的密度函數(shù)為密度函數(shù)為利用這條性質(zhì),我

4、們可以得到一條關(guān)于正態(tài)分利用這條性質(zhì),我們可以得到一條關(guān)于正態(tài)分布的線性性質(zhì),結(jié)果如下:布的線性性質(zhì),結(jié)果如下:設(shè)設(shè)則則特別地,當(dāng)特別地,當(dāng)時(shí),時(shí),例例4設(shè)設(shè)服從服從,求,求的密度函數(shù)的密度函數(shù)。解解已知已知且且為一個(gè)單調(diào)且有一階連續(xù)導(dǎo)數(shù)的函數(shù),其反為一個(gè)單調(diào)且有一階連續(xù)導(dǎo)數(shù)的函數(shù),其反函數(shù)函數(shù),則隨機(jī)變量函數(shù),則隨機(jī)變量函數(shù)的密度函數(shù)為的密度函數(shù)為例例5假設(shè)由自動(dòng)生產(chǎn)線加工的某種零件的內(nèi)假設(shè)由自動(dòng)生產(chǎn)線加工的某種零件的內(nèi)徑徑(單位:(單位:mm)服從正態(tài)分布服從正態(tài)分布,內(nèi)徑小,內(nèi)徑小于于10或大于或大于12為不合格品,其余為合格品,銷(xiāo)售每為不合格品,其余為合格品,銷(xiāo)售每件合格品獲利,銷(xiāo)售每

5、件不合格品則虧損,已知銷(xiāo)件合格品獲利,銷(xiāo)售每件不合格品則虧損,已知銷(xiāo)售利潤(rùn)售利潤(rùn)(單位:元)與銷(xiāo)售零件的內(nèi)徑(單位:元)與銷(xiāo)售零件的內(nèi)徑有如下有如下關(guān)系:關(guān)系:求求的分布律。的分布律。解解顯然顯然不是一個(gè)連續(xù)函數(shù)。事實(shí)上,不是一個(gè)連續(xù)函數(shù)。事實(shí)上,是一個(gè)離散型隨機(jī)變量,它可能的取值為是一個(gè)離散型隨機(jī)變量,它可能的取值為,且,且同理同理所以,所以,的分布律為的分布律為二、二維隨機(jī)變量函數(shù)的密度函數(shù)二、二維隨機(jī)變量函數(shù)的密度函數(shù)已知已知的密度函數(shù)為的密度函數(shù)為,如何求得隨機(jī),如何求得隨機(jī)變量變量的密度函數(shù)?下面著重討論的密度函數(shù)?下面著重討論的分布。的分布。例例6設(shè)設(shè)X與與Y相互獨(dú)立,且都服從指數(shù)

6、分布相互獨(dú)立,且都服從指數(shù)分布,試求試求的密度函數(shù)。的密度函數(shù)。解解指數(shù)分布指數(shù)分布的密度函數(shù)為的密度函數(shù)為因?yàn)橐驗(yàn)閄與與Y相互獨(dú)立,相互獨(dú)立,X與與Y的聯(lián)合密度函數(shù)為的聯(lián)合密度函數(shù)為的值域的值域,當(dāng),當(dāng)時(shí),時(shí),其中其中,從而,當(dāng),從而,當(dāng)時(shí),時(shí),通過(guò)求導(dǎo)數(shù)得通過(guò)求導(dǎo)數(shù)得的密度函數(shù)為的密度函數(shù)為 例例7 7 設(shè)設(shè)X與與Y相互獨(dú)立,且相互獨(dú)立,且,試求,試求的密度函數(shù)。的密度函數(shù)。解解因?yàn)橐驗(yàn)閄與與Y相互獨(dú)立,相互獨(dú)立,X與與Y的聯(lián)合密度函的聯(lián)合密度函數(shù)為數(shù)為的值域的值域,當(dāng),當(dāng)時(shí),時(shí),其中其中。由于。由于和和時(shí)的積分區(qū)域形狀不同,因此,需要分別討論。時(shí)的積分區(qū)域形狀不同,因此,需要分別討論。當(dāng)

7、當(dāng) 時(shí),時(shí),當(dāng)當(dāng)時(shí),時(shí),所以,所以,的分布函數(shù)為的分布函數(shù)為求導(dǎo)數(shù)得到求導(dǎo)數(shù)得到的密度函數(shù)為的密度函數(shù)為一般地,當(dāng)一般地,當(dāng)X與與Y的聯(lián)合密度函數(shù)為的聯(lián)合密度函數(shù)為時(shí),時(shí),的分布函數(shù)為的分布函數(shù)為對(duì)花括號(hào)內(nèi)的積分作變換對(duì)花括號(hào)內(nèi)的積分作變換,得到,得到于是于是從而,從而,Z的密度函數(shù)為的密度函數(shù)為當(dāng)當(dāng)X與與Y相互獨(dú)立時(shí),上式成為相互獨(dú)立時(shí),上式成為這個(gè)公式稱為卷積公式。這個(gè)公式稱為卷積公式。把把X與與Y的地位對(duì)調(diào),同樣可得卷積公式的另一的地位對(duì)調(diào),同樣可得卷積公式的另一種形式種形式 注意:由于許多問(wèn)題中注意:由于許多問(wèn)題中是分段函數(shù),是分段函數(shù),因此具體問(wèn)題中使用卷積公式并不帶來(lái)方便。當(dāng)密因此

8、具體問(wèn)題中使用卷積公式并不帶來(lái)方便。當(dāng)密度函數(shù)度函數(shù)是連續(xù)函數(shù)時(shí),應(yīng)用卷積公式可以是連續(xù)函數(shù)時(shí),應(yīng)用卷積公式可以直接求得密度函數(shù),因而比較方便。直接求得密度函數(shù),因而比較方便。定理定理3.9(正態(tài)分布的可加性)(正態(tài)分布的可加性)設(shè)設(shè)X與與Y相互相互獨(dú)立,當(dāng)獨(dú)立,當(dāng)時(shí),有時(shí),有證明證明的邊緣密度函數(shù)分別為的邊緣密度函數(shù)分別為按卷積公式,對(duì)任意一個(gè)按卷積公式,對(duì)任意一個(gè),隨機(jī),隨機(jī)變量函數(shù)變量函數(shù)的密度函數(shù)的密度函數(shù)由習(xí)題由習(xí)題3.12提供的積分公式得到提供的積分公式得到這恰是這恰是的密度函數(shù)。的密度函數(shù)。用數(shù)學(xué)歸納法不難把定理用數(shù)學(xué)歸納法不難把定理3.9推廣到推廣到n個(gè)相互獨(dú)個(gè)相互獨(dú)立的正態(tài)隨

9、機(jī)變量和上去。立的正態(tài)隨機(jī)變量和上去。在有些情形下,對(duì)略微復(fù)雜一點(diǎn)的函數(shù)在有些情形下,對(duì)略微復(fù)雜一點(diǎn)的函數(shù)(例如例如等等)用本節(jié)所講的一般用本節(jié)所講的一般方法也很容易解決。計(jì)算過(guò)程的關(guān)鍵是確定區(qū)域方法也很容易解決。計(jì)算過(guò)程的關(guān)鍵是確定區(qū)域并求出重積分。并求出重積分。三、串并聯(lián)系統(tǒng)問(wèn)題三、串并聯(lián)系統(tǒng)問(wèn)題設(shè)兩個(gè)元件的壽命分別為設(shè)兩個(gè)元件的壽命分別為,假定它們相互,假定它們相互獨(dú)立。獨(dú)立。(1)當(dāng)這兩個(gè)元件并聯(lián)時(shí),系統(tǒng)的壽命為)當(dāng)這兩個(gè)元件并聯(lián)時(shí),系統(tǒng)的壽命為(2)當(dāng)這兩個(gè)元件串聯(lián)時(shí),系統(tǒng)的壽命為)當(dāng)這兩個(gè)元件串聯(lián)時(shí),系統(tǒng)的壽命為如果如果的分布函數(shù)分別為的分布函數(shù)分別為,那,那么么U的分布函數(shù)為的分

10、布函數(shù)為V的分布函數(shù)為的分布函數(shù)為對(duì)于對(duì)于n個(gè)元件的串聯(lián)系統(tǒng)與并聯(lián)系統(tǒng),很容易個(gè)元件的串聯(lián)系統(tǒng)與并聯(lián)系統(tǒng),很容易得到類似的結(jié)果。得到類似的結(jié)果。例例8設(shè)設(shè)X與與Y是獨(dú)立同分布的隨機(jī)變量,它們是獨(dú)立同分布的隨機(jī)變量,它們都服從區(qū)間都服從區(qū)間上的均勻分布,其中上的均勻分布,其中,試求,試求與與的密度函數(shù)的密度函數(shù)。解解均勻分布均勻分布的分布函數(shù)的分布函數(shù)U的值域的值域,當(dāng),當(dāng)時(shí),時(shí),于是,于是,U的密度函數(shù)的密度函數(shù) V的值域的值域,當(dāng),當(dāng)時(shí):時(shí):于是,于是,V的密度函數(shù)為的密度函數(shù)為這里還要指出,盡管最大值、最小值分布函數(shù)這里還要指出,盡管最大值、最小值分布函數(shù)的公式對(duì)離散型隨機(jī)變量適用,但是,由于涉及較的公式對(duì)離散型隨機(jī)變量適用,但是,由于涉及較麻煩的分段函數(shù)運(yùn)算,因此還是用麻煩的分段函數(shù)運(yùn)算,因此還是用2.6中給出的方中給出的方法較容易,即通過(guò)求出概率函數(shù)來(lái)得到分布函數(shù)。法較容易,即通過(guò)求出概率函數(shù)來(lái)得到分布函數(shù)。

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!