汽車主減速器三維及二維設計【含三維SolidWorks、CAD圖紙、說明書】
資源目錄里展示的全都有預覽可以查看的噢,,下載就有,,請放心下載,原稿可自行編輯修改=【QQ:11970985 可咨詢交流】====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=【QQ:197216396 可咨詢交流】====================
本科生畢業(yè)設計(論文)外文翻譯
畢業(yè)設計(論文)題目:
外文題目:AUTOMOTIWE FINAL DRIVE
譯文題目:汽車主減速器
學 生 姓 名:
專 業(yè):
指導教師姓名:
評 閱 日 期:
AUTOMOTIWE FINAL DRIVE
FINAL DRIVE
A final drive is that part of a power transmission system between the drive shaft and the differential. Its function is to change the direction of the power transmitted by the drive shaft through 90 degrees to the driving axles. At the same time. it provides a fixed reduction between the speed of the drive shaft and the axle driving the wheels.
The reduction or gear ratio of the final drive is determined by dividing the number of teeth on the ring gear by the number of teeth on the pinion gear. In passenger vehicles, this speed reduction varies from about 3:1 to 5:1. In trucks it varies from about 5:1 to 11:1. To calculate rear axle ratio, count the number of teeth on each gear. Then divide the number of pinion teeth into the number of ring gear teeth. For example, if the pinion gear has 10 teeth and the ring gear has 30 (30 divided by 10), the rear axle ratio would be 3:1. Manufacturers install a rear axle ratio that provides a compromise between performance and economy. The average passenger car ratio is 3.50:1.
The higher axle ratio, 4.11:1 for instance, would increase acceleration and pulling power but would decrease fuel economy. The engine would have to run at a higher rpm to maintain an equal cruising speed.
The lower axle ratio. 3:1, would reduce acceleration and pulling power but would increase fuel mileage. The engine would run at a lower rpm while maintaining the same speed.
The major components of the final drive include the pinion gear, connected to the drive shaft, and a bevel gear or ring gear that is bolted or riveted to the differential carrier. To maintain accurate and proper alignment and tooth contact, the ring gear and differential assembly are mounted in bearings. The bevel drive pinion is supported by two tapered roller bearings, mounted in the differential carrier. This pinion shaft is straddle mounted. meaning that a bearing is located on each side of the pinion shaft teeth. Oil seals prevent the loss of lubricant from the housing where the pinion shaft and axle shafts protrude. As a mechanic, you will encounter the final drive gears in the spiral bevel and hypoid design.
Spiral Bevel Gear
Spiral bevel gears have curved gear teeth with the pinion and ring gear on the same center line. This type of final drive is used extensively in truck and occasionally in older automobiles. This design allows for constant contact between the ring gear and pinion. It also necessitates the use of heavy grade lubricants.
Hypoid Gear
The hypoid gear final drive is an improvement or variation of the spiral bevel design and is commonly used in light and medium trucks and all domestic rear- wheel drive automobiles. Hypoid gears have replaced spiral bevel gears because they lower the hump in the floor of the vehicle and improve gear-meshing action. As you can see in figure 5-13, the pinion meshes with the ring gear below the center line and is at a slight angle (less than 90 degrees).
Figure 5-13.—Types of final drives.
This angle and the use of heavier (larger) teeth permit an increased amount of power to be transmitted while the size of the ring gear and housing remain constant. The tooth design is similar to the spiral bevel but includes some of the characteristics of the worm gear. This permits the reduced drive angle. The hypoid gear teeth have a more pronounced curve and steeper angle, resulting in larger tooth areas and more teeth to be in contact at the same time. With more than one gear tooth in contact, a hypoid design increases gear life and reduces gear noise. The wiping action of the teeth causes heavy tooth pressure that requires the use of heavy grade lubricants.
Double-Reduction Final Drive
In the final drives shown in figure 5-13, there is a single fixed gear reduction. This is the only gear reduction in most automobiles and light- and some medium-duty trucks between the drive shaft and the wheels.
Double-reduction final drives are used for heavy- duty trucks. With this arrangement (fig. 5-14) it is not necessary to have a large ring gear to get the necessary gear reduction. The first gear reduction is obtained through a pinion and ring gear as the single fixed gear reduction final drive. Referring to figure 5-14, notice that the secondary pinion is mounted on the primary ring gear shaft. The second gear reduction is the result of the secondary pinion which is rigidly attached to the primary ring gear, driving a large helical gear which is attached to the differential case. Double-reduction final drives may be found on military design vehicles, such as the 5-ton truck. Many commercially designed vehicles of this size use a single- or double-reduction final drive with provisions for two speeds to be incorporated
Figure 5-14.—Double-reduction final drive
Two-Speed Final Drive
The two-speed or dual-ratio final drive is used to supplement the gearing of the other drive train components and is used in vehicles with a single drive axle (fig. 5-15). The operator can select the range or speed of this axle with a button on the shifting lever of the transmission or by a lever through linkage
The two-speed final drive doubles the number of gear ratios available for driving the vehicle under various load and road conditions. For example, a vehicle with a two-speed unit and a five-speed transmission, ten different forward speeds are available. This unit provides a gear ratio high enough to permit pulling a heavy load up steep grades and a low ratio to permit the vehicle to run at high speeds with a light load or no load
The conventional spiral bevel pinion and ring gear drives the two-speed unit, but a planetary gear train is placed between the differential drive ring gear and the differential case. The internal gear of the planetary gear train is bolted rigidly to the bevel drive gear. A ring on which the planetary gears are pivoted is bolted to the differential case. A member, consisting of the sun gear and a dog clutch, slides on one of the axle shafts and is controlled through a button or lever accessible to the operator
When in high range, the sun gear meshes with the internal teeth on the ring carrying the planetary gears and disengages the dog clutch from the left bearing adjusting ring, which is rigidly held in the differential carrier. In this position, the planetary gear train is locked together. There is no relative motion between the differential case and the gears in the planetary drive train. The differential case is driven directly by the differential ring gear, the same as in the conventional single fixed gear final drive.
When shifted into low range, the sun gear is slid out of mesh with the ring carrying the planetary gears. The dog clutch makes a rigid connection with the left bearing adjusting ring. Because the sun gear is integral with the dog clutch, it is also locked to the bearing adjusting rings and remains stationary. The internal gear rotates the planetary gears around the stationary sun gear, and the differential case is driven by the ring on which the planetary gears are pivoted. This action produces the gear reduction, or low speed, of the axle
DIFFERENTIAL ACTION
The rear wheels of a vehicle do not always turn at the same speed. When the vehicle is turning or when tire diameters differ slightly, the rear wheels must rotate at different speeds.
If there were a solid connection between each axle and the differential case, the tires would tend to slide, squeal, and wear whenever the operator turned the steering wheel of the vehicle. A differential is designed to prevent this problem.
Driving Straight Ahead
When a vehicle is driving straight ahead, the ring gear, the differential case, the differential pinion gears, and the differential side gears turn as a unit. The two differential pinion gears do NOT rotate on the pinion shaft, because they exert equal force on the side gears. As a result, the side gears turn at the same speed as the ring gear, causing both rear wheels to turn at the same speed.
Turning Corners
When the vehicle begins to round a curve, the differential pinion gears rotate on the pinion shaft. This occurs because the pinion gears must walk around the slower turning differential side gear. Therefore, the pinion gears carry additional rotary motion to the faster turning outer wheel on the turn..
Differential speed is considered to be 100 percent. The rotating action of the pinion gears carries 90 percent of this speed to the slowing mover inner wheel and sends 110 percent of the speed to the faster rotating outer wheel. This action allows the vehicle to make the turn without sliding or squealing the wheels.
Figure 5-15.—Two speed final drive
汽車主減速器
主減速器
主減速器是在傳動軸和差速器之間的一個動力傳動系統(tǒng)的組成部分。它的作用是通過90°傳動軸改變傳給驅動軸的動力傳遞方向。同時,它提供了一個固定的減速,該值介于傳動軸和驅動輪軸的速度之間。
主減速器的減速和齒輪傳動比取決于環(huán)形齒輪齒數(shù)和小齒輪齒數(shù)??蛙嚨臏p速在3:1到5:1之間,卡車是在5:1到11:1之間。計算后軸傳動比要數(shù)每個齒輪上的齒數(shù)。然后把小齒輪的齒數(shù)插入環(huán)形齒輪的齒數(shù)。例如,如果小齒輪有10齒,齒圈有30(30除以10),后軸比率將3:1。生產(chǎn)廠家在安裝后軸傳動比時要考慮到性能和費用之間的協(xié)調??蛙嚻骄谋嚷适?.50:1
更高軸比,例如4。11:1,將增加加速度和動力但會降低燃油經(jīng)濟性。發(fā)動機將不得不突然進攻一個更高轉速保持一個能與之匹敵的速度。
較低級軸比如3:1,將減少加速度和拉動力但是將會增加燃油里程。發(fā)動機將突然進攻一個降低轉速而維持同一速度。
主減速器的主要元件包括連接到傳動軸上的小齒輪,和一個被啰嗦或是鉚釘固定在差速器殼上的斜齒輪或者是圓柱齒輪。為了保持輪齒之間準確,正確的接觸,齒圈,差動總成被安裝在一定的方位。主動小錐齒輪由二對圓錐滾子軸承支撐,安裝在差速器上。這個小齒輪軸跨式組合安裝。意味著那是一個能被定位在每個小齒輪齒側的軸齒。油封是為了防止?jié)櫥瑒?,小齒輪軸,軸凸出的部分泄漏
弧齒錐齒輪
具有彎曲的輪齒的弧齒錐齒輪同小齒輪,齒圈在同一中心線。這種主減速器形式被廣闊使用在卡車上,偶爾用在年長的汽車上。這個設計允許環(huán)形齒和小齒輪之間建立不斷地聯(lián)系。它也因此有必要用高等級滑潤劑。
雙曲面齒輪
雙曲面齒輪減速器是一個改進或變異的盤旋斜角設計,常用在輕型和中型卡車以及所有國內(nèi)的四輪驅動汽車上。雙曲面齒輪已經(jīng)取代了弧齒錐齒輪,因為他們降低了汽車底板上的凸起,改善輪齒嚙合行動。正如你看到的在5-13圖中,小齒輪軸線在中心線的下方,在一個輕微角度(少于90°)。
這個角度和用的重(大)的輪齒可以保證被傳遞的功率增加同時保持環(huán)形齒的大小和容積不變。這種齒型設計類似盤旋斜角然而包括一些蝸輪的特征。這個保證驅動器角的減小。雙曲線齒輪輪齒有一個更顯著的彎曲和陡峭的角,導致了在大齒輪輪齒地區(qū)更多的輪齒在同時接觸。在不止一個輪齒在同時接觸的情況下,一個雙曲線設計能夠增加齒輪的壽命和減少齒輪噪音。輪齒的縱向滑動會引起很大的壓力,所以要使用高等級的潤滑油。
雙級主減速器
在圖5-13所示的主減速器中,有一個獨立的固定減速齒輪。這個獨一無二的減速齒輪常用在大多數(shù)汽車和輕型和中型卡車的傳動軸和車輪之間。
雙極主減速器被用在重型卡車上。有了這種安排(圖:5-14)我們就沒必要用一個大直徑的環(huán)形齒輪來使其獲得必要的齒輪減速。第一級齒輪減速是通過一個小齒輪,齒圈作為單固定齒輪減速來實現(xiàn)的主減速器。提到圖5-14,我們注意到那個次要小齒輪被安裝在主環(huán)形齒輪軸上。第二級齒輪減速是通過被安裝在主環(huán)形齒輪軸上的次要小齒輪驅動被附屬在差動器里面的一個大的螺旋齒輪實現(xiàn)的。雙級主減速可在軍用汽車上發(fā)現(xiàn),例如5噸卡車上。許多這種尺寸的商用汽車設計使用單級或雙級主減速器同規(guī)定的雙速結合在一起。
雙速主減速器
雙速或者是兩傳動比的主減速器常常被用來補充另一個傳動元件的齒輪,常用在單驅動軸的汽車上。(圖5-15)操作者選擇這個軸的范圍或者是速度可以通過一個按鍵安裝在傳輸?shù)淖兯贄U上或者是一個連鎖的杠桿。
雙速減速器擁有兩個齒輪比來驅動汽車以適用多種多樣的負荷和道路狀況。例如,一輛汽車有一個雙速單元,一個五速傳輸,那么就有十種不同的前進速度可供使用。這個單元提供一個足夠高的齒輪齒數(shù)比來保證拉重負荷徒級行駛,和一個低的比率以允許車輛在輕載或者是空載的情況下以高速來運行。
常規(guī)螺旋小傘齒輪,齒圈驅動雙速單位,但一個行星齒輪系被放置在差速器傳動齒輪和差速器殼之間。內(nèi)齒輪行星齒輪系被用螺絲定在硬性斜角傳動齒輪。有一個環(huán),在這個環(huán)上行星齒輪是回轉的,這個環(huán)被釘在差速器殼上。一個成員,它的組成包括太陽輪 和一個爪形離合器,滑動在其中的一個半軸上,通過一個按鍵或者是連接到操作者那里的杠桿被控制。
當在高的范圍,相嚙合的太陽齒輪同在環(huán)上的內(nèi)齒攜帶行星齒輪,從左邊的調整環(huán)上脫離接觸爪形離合器,這個環(huán)硬性固定在差速器殼上。在這個位置上,星系齒輪系被鎖在一起。在差速器殼和在行星傳動軸里的齒輪之間沒有相對運動。差速器殼由差速器環(huán)齒輪直接驅動,在常規(guī)的單級主減速器也是同樣的。
當在轉換到低的范圍,太陽齒輪從嚙合的狀態(tài)滑離,和環(huán)一起驅動行星齒輪。爪形離合器和左邊的調整環(huán)構成了一個剛性連接。因為太陽輪也是爪形離合器的一部分,它業(yè)被鎖在調整環(huán)上,保持靜止。內(nèi)齒輪使行星齒輪繞著靜止的太陽輪旋轉。差動器殼通過行星齒輪被安裝在樞軸上的環(huán)來驅動。這個動作將產(chǎn)生齒輪減速或者是低速的軸。
不同動作
一輛汽車的后輪不是總是用同一種速度在行駛。當汽車在轉彎或者是當輪胎直徑不同時,汽車的后輪們必須以不同的速度運轉。
如果在每個軸和差速器殼之間都有一個固體連接,那么輪胎將傾向于滑動、發(fā)出尖銳的噪聲、以及每當操作者轉動方向盤的時候磨損。一個差速器就被設計用來防止這樣的問題。
直線行駛
當汽車在直線行駛是,齒圈,差速器殼,差速器小齒輪和差速器邊緣齒輪像一個單元一樣運轉。兩個差速器小齒輪不在一個小齒輪軸上運轉,因為他們施加相等的力量到變齒輪上。結果,兩半軸齒輪與環(huán)形齒輪同一速度運轉,導致兩個車輪用同一速度運轉。
轉彎
當車輛按曲線行駛,差動齒輪旋轉在小齒輪軸。發(fā)生這種情況四因為小齒輪齒輪必須繞這慢轉差速器側齒輪旋轉。因此,在轉彎時,小齒輪會帶動差速器旋轉運動來使外轉向輪運動速度快。
差動的速度被認為是百分之百。小齒輪的旋轉運動將會把百分之九十的這個速度帶該運動緩慢的內(nèi)輪,把百分之一百一的速度傳遞給運動較快的外輪。這個動作會使汽車在轉彎的時候無滑動或者是這輪無噪聲。
畢業(yè)設計(論文)開題報告
課題名稱
汽車主減速設計
課題來源
課題類型
指導教師
學生姓名
學 號
專 業(yè)
開題報告內(nèi)容:(調研資料的準備,設計的目的、要求、思路與預期成果;任務完成的階段內(nèi)容及時間安排;完成設計(論文)所具備的條件因素等。)
一、調研資料的準備
汽車正常行駛時,發(fā)動機的轉速通常在2000至3000r/min左右,如果將這么高的轉速只靠變速箱來降低下來,那么變速箱內(nèi)齒輪副的傳動比則需很大,而齒輪副的傳動比越大,兩齒輪的半徑比也越大,換句話說,也就是變速箱的尺寸會越大。主減速器是汽車傳動系中減小轉速、增大扭矩的主要部件,它是依靠齒數(shù)少的錐齒輪帶動齒數(shù)多的錐齒輪。對發(fā)動機縱置的汽車,其主減速器還利用錐齒輪傳動以改變動力方向。由于汽車在各種道路上行使時,其驅動輪上要求必須具有一定的驅動力矩和轉速,在動力向左右驅動輪分流的差速器之前設置一個主減速器后,便可使主減速器前面的傳動部件如變速器、萬向傳動裝置等所傳遞的扭矩減小,從而可使其尺寸及質量減小、操縱省力[1]。
對于重型商用汽車來說,要傳遞的轉矩較一般乘用車和客車,以及輕型商用車都要大得多,以便能夠以較低的成本運輸較多的貨物,所以選擇功率較大的發(fā)動機,這就對傳動系統(tǒng)有較高的要求,而主減速器在傳動系統(tǒng)中起著非常重要的作用。
隨著目前國際上石油價格的上漲,汽車的經(jīng)濟性日益成為人們關心的話題,這不僅僅只對乘用車,對于重型載貨汽車,提高其燃油經(jīng)濟性也是各商用車生產(chǎn)商來提高其產(chǎn)品市場競爭力的一個法寶,因為重型載貨汽車所采用的發(fā)動機都是大功率,大轉矩的,裝載質量在十噸以上的載貨汽車的發(fā)動機,最大功率在140KW以上,最大轉矩也在700Nm以上,百公里油耗是一般都在34L左右。為了降低油耗,不僅要在發(fā)動機的環(huán)節(jié)上節(jié)油,而且也需要從傳動系中減少能量的損失。
主減速器是汽車傳動系中減小轉速、增大扭矩的主要部件,它是依靠齒數(shù)少的錐齒輪帶動齒數(shù)多的錐齒輪。對于重型卡車來說,要傳遞的轉矩較乘用車、客車,以及輕型商用車都要大得多,以便能夠以較低的成本運輸較多的貨物,所以選擇功率較大的發(fā)動機,這就對傳動系統(tǒng)有較高的要求,而主減速器在傳動系統(tǒng)中起著非常重要的作用。
二、設計的目的、要求
汽車主減速器的設計應滿足如下基本要求:
主減速器的設計應滿足如下基本要求[1]:
1、所選擇的主減速比應能保證汽車既有最佳的動力性和燃料經(jīng)濟性。
2、外型尺寸要小,保證有必要的離地間隙;齒輪其它傳動件工作平穩(wěn),噪音小。
3、在各種轉速和載荷下具有高的傳動效率;與懸架導向機構與動協(xié)調。
4、在保證足夠的強度、剛度條件下,應力求質量小,以改善汽車平順性。
5、結構簡單,加工工藝性好,制造容易,拆裝、調整方便。
三、設計思路與預期成果
主減速器按速比的變化可分為單速主減速器和雙速主減速器兩種。單級式主減速器應用于轎車和一般輕、中型載貨汽車。雙級式主減速器應用于大傳動比的中、重型汽車上,若其第二級減速器齒輪有兩副,并分置于兩側車輪附近,實際上成為獨立部件,則稱輪邊減速器。
由于本設計是汽車主減速器,由于它的主傳動比比較大,故選用二級主減速器。
現(xiàn)代汽車的主減速器,廣泛采用螺旋錐齒輪和雙曲面齒輪。螺旋錐齒輪傳動的主、從動齒輪軸線垂直相交于一點,齒輪并不同時在全長上嚙合,而是逐漸從一端連續(xù)平穩(wěn)地轉向另一端。另外,由于輪齒端面重疊的影響,至少有兩對以上的輪齒同時嚙合,所以它工作平穩(wěn)、能承受較大的負荷、制造也簡單。但是在工作中噪聲大,對嚙合精度很敏感,齒輪副錐頂稍有不吻合便會使工作條件急劇變壞,并伴隨磨損增大和噪聲增大。為保證齒輪副的正確嚙合,必須將支承軸承預緊,提高支承剛度,增大殼體剛度。根據(jù)嚙合面上法向力相等,可求出主、從動齒輪圓周力之比。一般情況下,當要求傳動比大于4.5而輪廓尺寸又有限時,采用雙曲面齒輪傳動更合理。這是因為如果保持主動齒輪軸徑不變,則雙曲面從動齒輪直徑比螺旋錐齒輪小。當傳動比小于2時,雙曲面主動齒輪相對螺旋錐齒輪主動齒輪顯得過大,占據(jù)了過多空間,這時可選用螺旋錐齒輪傳動,因為后者具有較大的差速器可利用空間。對于中等傳動比,兩種齒輪傳動均可采用。圓柱齒輪傳動一般采用斜齒輪,廣泛應用于發(fā)動機橫置且前置前驅動的轎車驅動橋和雙級主減速器貫通式驅動橋。
本設計的雙級主減速器第一級選取螺旋錐齒輪,第二級選取圓柱齒輪。
動錐齒輪的支承形式采用懸臂式支承結構。
四、任務完成的階段內(nèi)容及時間安排
序號 各階段完成的內(nèi)容 完成時間
1 查閱資料、調研 第1,2周
2 制訂設計方案 第3,4周
3 分析與計算 第5,6周
4 繪部件裝配圖 第7,8、9周
5 繪零件圖 第10,11周
6 撰寫設計說明書 第12,13周
7 準備答辯材料 第14周
8 畢業(yè)答辯 第15周
五、完成設計(論文)所具備的條件因素
1、查閱資料,了解汽車主減速器的發(fā)展現(xiàn)狀和工作原理;
2、對不同形式球磨機進行對比分析研究,確定出設計方案;
3、復習專業(yè)理論知識,為設計工作做準備;
4、利用AUTO CAD等計算機輔助設計軟件。
指導教師簽名: 日期:
(可加頁)
注:課題來源要填寫明確(如教師擬定、學生建議、某企事業(yè)單位項目等)
課題類型:(1)A—工程設計;B—技術開發(fā);C—軟件工程;D—理論研究;
E—調研報告(文科)、產(chǎn)品制作(理工科)
(2)X—真實課題;Y—模擬課題;
要求(1)、(2)均要填,如AY,BY等。
本科畢業(yè)設計(論文)
——文獻綜述
題 目 汽車主減速器設計
姓 名
專 業(yè)
學 號
指導教師
年五月
汽車主減速器設計
汽車主減速器設計
摘 要:本設計是汽車主減速器及差速器的設計。主減速器設計時根據(jù)給定的基本參數(shù)計算出主減速比,根據(jù)計算得到的主減速比選取主減速器類型為雙級主減速器;與單級主減速器相比,在保證離地間隙相同時還得到很大的傳動比,并且還擁有結構緊湊,噪聲小,使用壽命長等優(yōu)點。差速器根據(jù)主減速器的設計和以往的經(jīng)驗借鑒選取為結構簡單、工作性能平穩(wěn)、制造方便的對稱式圓錐行星齒輪差速器。本設計主要內(nèi)容包括:雙級主減速器和對稱式圓錐行星齒輪差速器各個零件參數(shù)的設計和校核過程。主減速器結構的選擇、主、從動錐齒輪的設計、軸承的校核;差速器結構的選擇、行星齒輪、半軸齒輪的設計和校核。
關鍵詞:汽車/雙級主減速器/軸/軸承
1.主減速器及差速器的概述
汽車正常行駛時,發(fā)動機的轉速通常在2000至3000r/min左右,如果將這么高的轉速只靠變速箱來降低下來,那么變速箱內(nèi)齒輪副的傳動比則需很大,而齒輪副的傳動比越大,兩齒輪的半徑比也越大,換句話說,也就是變速箱的尺寸會越大。主減速器是汽車傳動系中減小轉速、增大扭矩的主要部件,它是依靠齒數(shù)少的錐齒輪帶動齒數(shù)多的錐齒輪。對發(fā)動機縱置的汽車,其主減速器還利用錐齒輪傳動以改變動力方向。由于汽車在各種道路上行使時,其驅動輪上要求必須具有一定的驅動力矩和轉速,在動力向左右驅動輪分流的差速器之前設置一個主減速器后,便可使主減速器前面的傳動部件如變速器、萬向傳動裝置等所傳遞的扭矩減小,從而可使其尺寸及質量減小、操縱省力[1]。
汽車主減速器總成是汽車傳動系的重要部件之一,其功用是降速增矩(將輸入的轉矩增大并相應降低轉速),并可改變發(fā)動機轉矩的傳遞方向,以適應汽車的行駛方向。主減速器總成對裝配精度的要求很高,其制造和裝配質量對驅動橋乃至整車的性能有很大的影響。
由于受到傳統(tǒng)制造、裝配工藝和測控手段限制,主減速器的裝配質量往往滿足不了高質量汽車的要求。近年國內(nèi)許多車橋生產(chǎn)廠家先后使用了成套制造設備和主減速器柔性裝配線,使制造和裝配質量有了一定的提高,但針對其裝配精度的檢測,目前尚缺乏自動化測控設備。
對于載貨汽車來說,要傳遞的轉矩較乘用車和客車,以及輕型商用車都要大得多,以便能夠以較低的成本運輸較多的貨物,所以選擇功率較大的發(fā)動機,這就對傳動系統(tǒng)有較高的要求,而主減速器在傳動系統(tǒng)中起著非常重要的作用。
隨著目前國際上石油價格的上漲,汽車的經(jīng)濟性日益成為人們關心的話題,這不僅僅只對乘用車,對于重型載貨汽車,提高其燃油經(jīng)濟性也是各商用車生產(chǎn)商來提高其產(chǎn)品市場競爭力的一個法寶,因為重型載貨汽車所采用的發(fā)動機都是大功率,大轉矩的,裝載質量在十噸以上的載貨汽車的發(fā)動機,最大功率在140KW以上,最大轉矩也在700Nm以上,百公里油耗是一般都在34L左右。為了降低油耗,不僅要在發(fā)動機的環(huán)節(jié)上節(jié)油,而且也需要從傳動系中減少能量的損失。
主減速器是汽車傳動系中減小轉速、增大扭矩的主要部件,它是依靠齒數(shù)少的錐齒輪帶動齒數(shù)多的錐齒輪。對于重型卡車來說,要傳遞的轉矩較乘用車、客車,以及輕型商用車都要大得多,以便能夠以較低的成本運輸較多的貨物,所以選擇功率較大的發(fā)動機,這就對傳動系統(tǒng)有較高的要求,而主減速器在傳動系統(tǒng)中起著非常重要的作用。
因此,在發(fā)動機相同的情況下,采用性能優(yōu)良且與發(fā)動機匹配性比較高的傳動系便成了有效節(jié)油的措施之一。所以設計新型的主減速器已成為了新的課題。
根據(jù)汽車行駛運動學的要求和實際的車輪、道路以及他們之間的相互關系表明:汽車在行駛過程中左右車輪在同一時間內(nèi)所滾過的形成往往是由差別的。例如,轉彎時外側的車輪的行程總要比內(nèi)側的長。在左右車輪行程不等的情況下,如果采用一根整體的驅動車輪軸將動力傳給左右車輪,則會由于左右驅動車輪的轉速雖相等而行程卻又不同的這一運動學上的矛盾,引起某一驅動車輪產(chǎn)生滑移或滑轉。
為了消除由于左右車輪在運動學上的不協(xié)調而產(chǎn)生的這些弊病,汽車左右驅動輪間都裝由差速器,后者保證了汽車驅動橋兩側車輪在行程不等時具有以不同速度旋轉的特性,從而滿足了汽車行駛運動學的要求。
同樣情況也發(fā)生在多驅動橋中,前、后驅動橋之間,中、后驅動橋之間等會因車輪滾動半徑不同而導致驅動橋間的功率循環(huán),從而使傳動系的載荷增大,損傷其零件,增加輪胎的磨損和燃料的消耗等,因此一些多驅動橋的汽車上也裝了軸間差速器。
差速器的結構型使選擇,應從所設計汽車的類型及其使用條件出嘎,以滿足該型汽車在給定的使用條件下的使用性能要求。
2.主減速器設計的要求
驅動橋中主減速器的設計應滿足如下基本要求[1]:
1、所選擇的主減速比應能保證汽車既有最佳的動力性和燃料經(jīng)濟性。
2、外型尺寸要小,保證有必要的離地間隙;齒輪其它傳動件工作平穩(wěn),噪音小。
3、在各種轉速和載荷下具有高的傳動效率;與懸架導向機構與動協(xié)調。
4、在保證足夠的強度、剛度條件下,應力求質量小,以改善汽車平順性。
5、結構簡單,加工工藝性好,制造容易,拆裝、調整方便。
3.主減速器的結構形勢分析
3.1主減速器的減速形式與齒輪類型
為了滿足不同的使用要求,主減速器的結構形式也是不同的。
主減速器的減速型式分為單級減速、雙級減速、雙速減速、單級貫通、雙級貫通、主減速及輪邊減速等。減速型式的選擇與汽車的使用類型及使用條件有關有時也與制造廠已有的產(chǎn)品系列及制造條件有關,但它主要取決于動力性、經(jīng)經(jīng)濟性等整車能所要求的主減速比的大小及驅動橋下的離地間隙、驅動橋的數(shù)目及布置型式等。
根據(jù)主減速器的使用目的和要求的不同,其結構形式也有很大差異。按主減速器所處的位置可分為中央主減速器和輪邊減速器,按參加減速傳動的齒輪副可分為單級式主減速器和雙級式主減速器。按主減速器速比的變化可分為單速主減速器和雙速主減速器兩種。單級式主減速器應用于轎車和一般輕、中型載貨汽車。雙級式主減速器應用于大傳動比的中、重型汽車上,若其第二級減速器齒輪有兩副,并分置于兩側車輪附近,實際上成為獨立部件,則稱輪邊減速器。
由于本設計是重型卡車主減速器,由于它的主傳動比比較大,故選用二級主減速器。
現(xiàn)代汽車的主減速器,廣泛采用螺旋錐齒輪和雙曲面齒輪。螺旋錐齒輪傳動的主、從動齒輪軸線垂直相交于一點,齒輪并不同時在全長上嚙合,而是逐漸從一端連續(xù)平穩(wěn)地轉向另一端。另外,由于輪齒端面重疊的影響,至少有兩對以上的輪齒同時嚙合,所以它工作平穩(wěn)、能承受較大的負荷、制造也簡單。但是在工作中噪聲大,對嚙合精度很敏感,齒輪副錐頂稍有不吻合便會使工作條件急劇變壞,并伴隨磨損增大和噪聲增大。為保證齒輪副的正確嚙合,必須將支承軸承預緊,提高支承剛度,增大殼體剛度。根據(jù)嚙合面上法向力相等,可求出主、從動齒輪圓周力之比。一般情況下,當要求傳動比大于4.5而輪廓尺寸又有限時,采用雙曲面齒輪傳動更合理。這是因為如果保持主動齒輪軸徑不變,則雙曲面從動齒輪直徑比螺旋錐齒輪小。當傳動比小于2時,雙曲面主動齒輪相對螺旋錐齒輪主動齒輪顯得過大,占據(jù)了過多空間,這時可選用螺旋錐齒輪傳動,因為后者具有較大的差速器可利用空間。對于中等傳動比,兩種齒輪傳動均可采用。圓柱齒輪傳動一般采用斜齒輪,廣泛應用于發(fā)動機橫置且前置前驅動的轎車驅動橋和雙級主減速器貫通式驅動橋。
本設計的雙級主減速器第一級選取螺旋錐齒輪,第二級選取圓柱齒輪。
3.2主減速器主、從動錐齒輪的支承方案
在殼體結構及軸承型式已定的情況下,主減速器主動齒輪的支承型式及安置方法,對其支承剛度影響很大,這是齒輪能否正確嚙合并具有較高使用壽命的重要元素之一。
3.2.1主動錐齒輪的支承
主動錐齒輪的支承形式可分為懸臂式支承和騎馬式支承兩種。查閱資料、文獻,經(jīng)方案論證,采用懸臂式支承結構(如圖3.1(a)所示)。
1—調整墊片 2—調整墊圈
(a)懸臂式支承 (b)騎馬式支承
圖3.1 主動錐齒輪的支承型式
3.2.2從動錐齒輪的支承
主減速器從動錐齒輪的支承剛度依軸承的型式,支承間的距離和載荷在軸承之間的分布即載荷離兩端軸承支承中心間的距離c和d(如圖3.2)之比例而定。為了增強支承剛度,支承間的距離應盡量縮小。但為了使從動錐齒輪背面的支承突緣有足夠的位置設置加強筋及增強支承的穩(wěn)定性,距離c+d應不小于從動錐齒輪節(jié)園直徑的70%.兩端支承多采用圓錐滾子軸承,安裝時應使它們的圓錐滾子大端相向超內(nèi)朝內(nèi),而小端相背朝外。為了使載荷能盡量均勻分在兩個軸承上,并且讓出位置來加強從動齒輪連接突緣的剛性,應盡量使尺寸c等于或大于d。為了防止從動齒輪在軸向載荷作用下的偏移,圓錐滾子軸承也應預緊。由于從動錐齒輪軸承是裝在差速器殼上,尺寸較大,足以保證剛度。
圖3.2從動錐齒輪的支承型式
參考文獻
[1] 劉惟信主編. 汽車設計[M].北京:清華大學出版社,2001
[2] 吉林工業(yè)大學汽車教研室編.汽車設計[M].北京:機械工業(yè)出版社,1981
[3] 仙波正莊(日).行星齒輪傳動及應用[M].北京:機械工業(yè)出版社,1998
[4] 吳宗澤、羅圣國主編.機械設計課程設計[M].北京:高等教育出版社,1999
[5] 姚貴升主編.汽車金屬材料應用手冊[M].北京:北京理工大學出版社,2000
[6] 機械設計手冊委員會編.機械設計手冊第3卷[M].北京:機械工業(yè)出版社,2004
[7] 陳家瑞主編.汽車構造(下)[M].北京:人民交通出版社.2000
[8] 殷沈綿主編.汽車底盤構造與檢修[M].北京:機械工業(yè)出版社,2006
[9] 《汽車工程手冊》編輯委員會.汽車工程手冊[M].北京:人民交通出版社.2001
[10] 劉惟信主編.汽車設計方法理論[M].北京:機械工業(yè)出版社,1992
[11] 彭文生等.機械設計與機械原理指南[M].華中理工大學出版社.1998《汽車工程手冊》編輯委員會.汽車工程手冊[M].北京:人民交通出版社.2001
[12] 李仲生主編.機械設計基礎(第5版)[M].北京:機械工業(yè)出版社,2006
[13] 林慕義 張福生主編.車輛底盤構造與設計[M].北京:冶金工業(yè)出版社,2007
[14] 成大先.機械設計手冊[M].北京:化學工業(yè)出版社,2002
[15] 劉鴻文主編.材料力學(第三版)[M].北京:高等教育出版社,1993
[16] 機械設計手冊編委會.機械設計手冊 減速器和變速器[M].機械工業(yè)出版社,2007
[17] Detached we Eddy si Lations Over a si lified Landing Gear.L.5.He dges ,A .L Travin[M].PR. Spalart. Journalfo FluidsEngineering.2002
[18] The Key Cballenges for Northerican Truck Manu facturers[M].Beyond Au tmootive design production.JustinCok.2006
[19] Deebe Ferris.A Ward’s Special Research Report Ward’s Communications,1994
[20] G.Boothroyd and P.Dewhurst. Product Design for Manufacture and Assembly.Manuf.
Eng.1988
[21] Josh Constance.DFMA:Learning to Design for Manufacture and Assembly.Mech.
Eng.1992
6
收藏