《新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 課時(shí)分層訓(xùn)練43 垂直關(guān)系 理 北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 課時(shí)分層訓(xùn)練43 垂直關(guān)系 理 北師大版(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
1
2、 1
課時(shí)分層訓(xùn)練(四十三) 垂直關(guān)系
A組 基礎(chǔ)達(dá)標(biāo)
一、選擇題
1.設(shè)α,β為兩個(gè)不同的平面,直線lα,則“l(fā)⊥β”是“α⊥β”成立的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
A [依題意,由l⊥β,lα可以推出α⊥β;反過(guò)來(lái),由α⊥β,lα不能推出l⊥β.因此,“l(fā)⊥β”是“α⊥β”成立的充分不必要條件,故選A.
3、]
2.(20xx·中原名校聯(lián)盟4月聯(lián)考)已知m和n是兩條不同的直線,α和β是兩個(gè)不重合的平面,下面給出的條件中一定能推出m⊥β的是( )
A.α⊥β且mα B.α⊥β且m∥α
C.m∥n且n⊥β D.m⊥n且n∥β
C [對(duì)于選項(xiàng)A,α⊥β且mα,可得m∥β或m與β相交或mβ,故A不成立;對(duì)于選項(xiàng)B,α⊥β且m∥α,可得mβ或m∥β或m與β相交,故B不成立;對(duì)于選項(xiàng)C,m∥n且n⊥β,則m⊥β,故C正確;對(duì)于選項(xiàng)D,由m⊥n且n∥β,可得m∥β或m與β相交或mβ,故D不成立,故選C.]
3.設(shè)a,b是夾角為30°的異面直線,則滿足條件“aα,bβ,且α⊥β”的平面α,β(
4、 )
A.不存在 B.有且只有一對(duì)
C.有且只有兩對(duì) D.有無(wú)數(shù)對(duì)
D [過(guò)直線a的平面α有無(wú)數(shù)個(gè),當(dāng)平面α與直線b平行時(shí),兩直線的公垂線與b確定的平面β⊥α,當(dāng)平面α與b相交時(shí),過(guò)交點(diǎn)作平面α的垂線與b確定的平面β⊥α.故選D.]
4.(20xx·全國(guó)卷Ⅲ)在正方體ABCD-A1B1C1D1中,E為棱CD的中點(diǎn),則( )
A.A1E⊥DC1 B.A1E⊥BD
C.A1E⊥BC1 D.A1E⊥AC
C [
如圖,∵A1E在平面ABCD上的投影為AE,而AE不與AC,BD垂直,∴B,D錯(cuò);
∵A1E在平面BCC1B1上的投影為B1C,且B1C⊥BC1,
∴A1E⊥
5、BC1,故C正確;
(證明:由條件易知,BC1⊥B1C,BC1⊥CE,又CE∩B1C=C,
∴BC1⊥平面CEA1B1.又A1E平面CEA1B1,∴A1E⊥BC1)
∵A1E在平面DCC1D1上的投影為D1E,而D1E不與DC1垂直,故A錯(cuò).
故選C.]
5.(20xx·河北唐山一模)如圖7-4-10,在正方形ABCD中,E、F分別是BC、CD的中點(diǎn),G是EF的中點(diǎn),現(xiàn)在沿AE、AF及EF把這個(gè)正方形折成一個(gè)空間圖形,使B、C、D三點(diǎn)重合,重合后的點(diǎn)記為H,那么,在這個(gè)空間圖形中必有( )
【導(dǎo)學(xué)號(hào):79140236】
圖7-4-10
A.AG⊥平面EFH B.AH⊥平
6、面EFH
C.HF⊥平面AEF D.HG⊥平面AEF
B [根據(jù)折疊前、后AH⊥HE,AH⊥HF不變,
∴AH⊥平面EFH,B正確;
∵過(guò)A只有一條直線與平面EFH垂直,∴A不正確;
∵AG⊥EF,EF⊥GH,AG∩GH=G,∴EF⊥平面HAG,又EF平面AEF,∴平面HAG⊥AEF,過(guò)H作直線垂直于平面AEF,一定在平面HAG內(nèi),∴C不正確;
由條件證不出HG⊥平面AEF,∴D不正確.故選B.]
二、填空題
6.如圖7-4-11,∠BAC=90°,PC⊥平面ABC,則在△ABC,△PAC的邊所在的直線中,與PC垂直的直線是________;與AP垂直的直線是________.
7、
圖7-4-11
AB,BC,AC;AB [∵PC⊥平面ABC,
∴PC垂直于直線AB,BC,AC.
∵AB⊥AC,AB⊥PC,AC∩PC=C,
∴AB⊥平面PAC,
∴AB⊥AP,故與AP垂直的直線是AB.]
7.如圖7-4-12所示,在四棱錐P-ABCD中,PA⊥底面ABCD,且底面各邊都相等,M是PC上的一動(dòng)點(diǎn),當(dāng)點(diǎn)M滿足________時(shí),平面MBD⊥平面PCD.(只要填寫(xiě)一個(gè)你認(rèn)為是正確的條件即可)
圖7-4-12
DM⊥PC(或BM⊥PC) [連接AC,BD,則AC⊥BD,∵PA⊥底面ABCD,∴PA⊥BD.
又PA∩AC=A,∴BD⊥平面PAC,∴BD
8、⊥PC.
∴當(dāng)DM⊥PC(或BM⊥PC)時(shí),即有PC⊥平面MBD.
而PC平面PCD,
∴平面MBD⊥平面PCD.]
8.(20xx·全國(guó)卷Ⅱ)α,β是兩個(gè)平面,m,n是兩條直線,有下列四個(gè)命題:
①如果m⊥n,m⊥α,n∥β,那么α⊥β.
②如果m⊥α,n∥α,那么m⊥n.
③如果α∥β,mα,那么m∥β.
④如果m∥n,α∥β,那么m與α所成的角和n與β所成的角相等.
其中正確的命題有________.(填寫(xiě)所有正確命題的編號(hào))
【導(dǎo)學(xué)號(hào):79140237】
②③④ [對(duì)于①,α,β可以平行,也可以相交但不垂直,故錯(cuò)誤.
對(duì)于②,由線面平行的性質(zhì)定理知存在直線lα
9、,n∥l,又m⊥α,所以m⊥l,所以m⊥n,故正確.
對(duì)于③,因?yàn)棣痢桅?,所以α,β沒(méi)有公共點(diǎn).又mα,所以m,β沒(méi)有公共點(diǎn),由線面平行的定義可知m∥β,故正確.
對(duì)于④,因?yàn)閙∥n,所以m與α所成的角和n與α所成的角相等.因?yàn)棣痢桅?,所以n與α所成的角和n與β所成的角相等,所以m與α所成的角和n與β所成的角相等,故正確.]
三、解答題
9.(20xx·北京高考)如圖7-4-13,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).
圖7-4-13
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC
10、;
(3)當(dāng)PA∥平面BDE時(shí),求三棱錐E-BCD的體積.
[解] (1)證明:因?yàn)镻A⊥AB,PA⊥BC,所以PA⊥平面ABC.
又因?yàn)锽D平面ABC,所以PA⊥BD.
(2)證明:因?yàn)锳B=BC,D為AC的中點(diǎn),所以BD⊥AC.
由(1)知,PA⊥BD,
所以BD⊥平面PAC,
所以平面BDE⊥平面PAC.
(3)因?yàn)镻A∥平面BDE,平面PAC∩平面BDE=DE,所以PA∥DE.
因?yàn)镈為AC的中點(diǎn),所以DE=PA=1,BD=DC=.
由(1)知,PA⊥平面ABC,所以DE⊥平面ABC,
所以三棱錐E-BCD的體積V=BD·DC·DE=.]
10.(20xx·江蘇
11、高考)如圖7-4-14,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.
圖7-4-14
求證:(1)EF∥平面ABC;
(2)AD⊥AC.
[證明] (1)在平面ABD內(nèi),因?yàn)锳B⊥AD,EF⊥AD,
所以EF∥AB.
又因?yàn)镋F平面ABC,AB平面ABC,
所以EF∥平面ABC.
(2)因?yàn)槠矫鍭BD⊥平面BCD,
平面ABD∩平面BCD=BD,
BC平面BCD,BC⊥BD,
所以BC⊥平面ABD.
因?yàn)锳D平面ABD,所以BC⊥AD.
又AB⊥AD,BC∩AB=B,AB平面
12、ABC,BC平面ABC,
所以AD⊥平面ABC.
又因?yàn)锳C平面ABC,
所以AD⊥AC.
B組 能力提升
11.(20xx·貴州貴陽(yáng)二模)如圖7-4-15,在正方形ABCD中,E,F(xiàn)分別是BC,CD的中點(diǎn),沿AE,AF,EF把正方形折成一個(gè)四面體,使B,C,D三點(diǎn)重合,重合后的點(diǎn)記為P,P點(diǎn)在△AEF內(nèi)的射影為O,則下列說(shuō)法正確的是( )
圖7-4-15
A.O是△AEF的垂心
B.O是△AEF的內(nèi)心
C.O是△AEF的外心
D.O是△AEF的重心
A [由題意可知PA,PE,PF兩兩垂直,
所以PA⊥平面PEF,從而PA⊥EF,
而PO⊥平面AEF,則PO⊥
13、EF,因?yàn)镻O∩PA=P,
所以EF⊥平面PAO,
所以EF⊥AO,同理可知AE⊥FO,AF⊥EO,
所以O(shè)為△AEF的垂心.]
12.如圖7-4-16,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,底面是以∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中點(diǎn),點(diǎn)F在線段AA1上,當(dāng)AF=________時(shí),CF⊥平面B1DF.
圖7-4-16
a或2a [∵B1D⊥平面A1ACC1,∴CF⊥B1D.
為了使CF⊥平面B1DF,只要使CF⊥DF(或CF⊥B1F).
設(shè)AF=x,則CD2=DF2+FC2,
∴x2-3ax+2a2=0,∴x=
14、a或x=2a.]
13. (20xx·四川高考)如圖7-4-17,在四棱錐P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.
圖7-4-17
(1)在平面PAD內(nèi)找一點(diǎn)M,使得直線CM∥平面PAB,并說(shuō)明理由;
(2)證明:平面PAB⊥平面PBD.
【導(dǎo)學(xué)號(hào):79140238】
[解] (1)取棱AD的中點(diǎn)M(M∈平面PAD),點(diǎn)M即為所求的一個(gè)點(diǎn).
理由如下:連接CM,
因?yàn)锳D∥BC,BC=AD,
所以BC∥AM,且BC=AM.
所以四邊形AMCB是平行四邊形,
所以CM∥AB.
又AB平面PAB,CM平面PAB,
所以CM∥平面PAB.
(說(shuō)明:取棱PD的中點(diǎn)N,則所找的點(diǎn)可以是直線MN上任意一點(diǎn))
(2)證明:由已知,PA⊥AB,PA⊥CD,
因?yàn)锳D∥BC,BC=AD,所以直線AB與CD相交,
所以PA⊥平面ABCD,所以PA⊥BD.
因?yàn)锳D∥BC,BC=AD,M為AD的中點(diǎn),連接BM,
所以BC∥MD,且BC=MD,
所以四邊形BCDM是平行四邊形,
所以BM=CD=AD,所以BD⊥AB.
又AB∩AP=A,所以BD⊥平面PAB.
又BD平面PBD,所以平面PAB⊥平面PBD.