《新課標(biāo)》高三數(shù)學(xué)(人教版)第一輪復(fù)習(xí)單元講座 第30講 數(shù)列求和及數(shù)列實際問題

上傳人:dao****ing 文檔編號:62145464 上傳時間:2022-03-14 格式:DOC 頁數(shù):25 大?。?28KB
收藏 版權(quán)申訴 舉報 下載
《新課標(biāo)》高三數(shù)學(xué)(人教版)第一輪復(fù)習(xí)單元講座 第30講 數(shù)列求和及數(shù)列實際問題_第1頁
第1頁 / 共25頁
《新課標(biāo)》高三數(shù)學(xué)(人教版)第一輪復(fù)習(xí)單元講座 第30講 數(shù)列求和及數(shù)列實際問題_第2頁
第2頁 / 共25頁
《新課標(biāo)》高三數(shù)學(xué)(人教版)第一輪復(fù)習(xí)單元講座 第30講 數(shù)列求和及數(shù)列實際問題_第3頁
第3頁 / 共25頁

下載文檔到電腦,查找使用更方便

16 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《《新課標(biāo)》高三數(shù)學(xué)(人教版)第一輪復(fù)習(xí)單元講座 第30講 數(shù)列求和及數(shù)列實際問題》由會員分享,可在線閱讀,更多相關(guān)《《新課標(biāo)》高三數(shù)學(xué)(人教版)第一輪復(fù)習(xí)單元講座 第30講 數(shù)列求和及數(shù)列實際問題(25頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、普通高中課程標(biāo)準(zhǔn)實驗教科書—數(shù)學(xué) [人教版] 高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座30)—數(shù)列求和及數(shù)列實際問題 一.課標(biāo)要求: 1.探索并掌握一些基本的數(shù)列求前n項和的方法; 2.能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的數(shù)列的通項和遞推關(guān)系,并能用有關(guān)等差、等比數(shù)列知識解決相應(yīng)的實際問題。 二.命題走向 數(shù)列求和和數(shù)列綜合及實際問題在高考中占有重要的地位,一般情況下都是出一道解答題,解答題大多以數(shù)列為工具,綜合運(yùn)用函數(shù)、方程、不等式等知識,通過運(yùn)用逆推思想、函數(shù)與方程、歸納與猜想、等價轉(zhuǎn)化、分類討論等各種數(shù)學(xué)思想方法,這些題目都考察考生靈活運(yùn)用數(shù)學(xué)知識分析問題和解決問題的能力,它們都屬于中、

2、高檔題目。 有關(guān)命題趨勢: 1.?dāng)?shù)列是一種特殊的函數(shù),而不等式則是深刻認(rèn)識函數(shù)和數(shù)列的有效工具,三者的綜合題是對基礎(chǔ)和能力的雙重檢驗,在三者交匯處設(shè)計試題,特別是代數(shù)推理題是高考的重點; 2.?dāng)?shù)列推理題是將繼續(xù)成為數(shù)列命題的一個亮點,這是由于此類題目能突出考察學(xué)生的邏輯思維能力,能區(qū)分學(xué)生思維的嚴(yán)謹(jǐn)性、靈敏程度、靈活程度; 3.?dāng)?shù)列與新的章節(jié)知識結(jié)合的特點有可能加強(qiáng),如與解析幾何的結(jié)合等; 4.有關(guān)數(shù)列的應(yīng)用問題也一直備受關(guān)注。 預(yù)測2007年高考對本將的考察為: 1.可能為一道考察關(guān)于數(shù)列的推導(dǎo)能力或解決生產(chǎn)、生活中的實際問題的解答題; 2.也可能為一道知識交匯題是數(shù)列與函數(shù)

3、、不等式、解析幾何、應(yīng)用問題上等聯(lián)系的綜合題,以及數(shù)列、數(shù)學(xué)歸納法等有機(jī)結(jié)合。 三.要點精講 1.?dāng)?shù)列求通項與和 (1)數(shù)列前n項和Sn與通項an的關(guān)系式:an= 。 (2)求通項常用方法 ①作新數(shù)列法。作等差數(shù)列與等比數(shù)列; ②累差疊加法。最基本的形式是:an=(an-an-1)+(an-1+an-2)+…+(a2-a1)+a1; ③歸納、猜想法。 (3)數(shù)列前n項和 ①重要公式:1+2+…+n=n(n+1); 12+22+…+n2=n(n+1)(2n+1); 13+23+…+n3=(1+2+…+n)2=n2(n+1)2; ②等差數(shù)列中,Sm+n=Sm+Sn+mn

4、d; ③等比數(shù)列中,Sm+n=Sn+qnSm=Sm+qmSn; ④裂項求和 將數(shù)列的通項分成兩個式子的代數(shù)和,即an=f(n+1)-f(n),然后累加抵消掉中間的許多項,這種先裂后消的求和法叫裂項求和法。用裂項法求和,需要掌握一些常見的裂項,如:、=-、n·n!=(n+1)!-n!、Cn-1r-1=Cnr-Cn-1r、=-等。 ⑤錯項相消法 對一個由等差數(shù)列及等比數(shù)列對應(yīng)項之積組成的數(shù)列的前n項和,常用錯項相消法。, 其中是等差數(shù)列, 是等比數(shù)列,記,則,… ⑥并項求和 把數(shù)列的某些項放在一起先求和,然后再求Sn。 數(shù)列求通項及和的方法多種多樣,要視具體情形選用合適方法。 ⑦

5、通項分解法: 2.遞歸數(shù)列 數(shù)列的連續(xù)若干項滿足的等量關(guān)系an+k=f(an+k-1,an+k-2,…,an)稱為數(shù)列的遞歸關(guān)系。由遞歸關(guān)系及k個初始值可以確定的一個數(shù)列叫做遞歸數(shù)列。如由an+1=2an+1,及a1=1,確定的數(shù)列即為遞歸數(shù)列。 遞歸數(shù)列的通項的求法一般說來有以下幾種: (1)歸納、猜想、數(shù)學(xué)歸納法證明。 (2)迭代法。 (3)代換法。包括代數(shù)代換,對數(shù)代數(shù),三角代數(shù)。 (4)作新數(shù)列法。最常見的是作成等差數(shù)列或等比數(shù)列來解決問題。 四.典例解析 題型1:裂項求和 例1.已知數(shù)列為等差數(shù)列,且公差不為0,首項也不為0,求和:。 解析:首先考慮,則=。

6、點評:已知數(shù)列為等差數(shù)列,且公差不為0,首項也不為0,下列求和也可用裂項求和法。 例2.求。 解析:, 點評:裂項求和的關(guān)鍵是先將形式復(fù)雜的因式轉(zhuǎn)化的簡單一些。 題型2:錯位相減法 例3.設(shè)a為常數(shù),求數(shù)列a,2a2,3a3,…,nan,…的前n項和。 解析:①若a=0時,Sn=0; ②若a=1,則Sn=1+2+3+…+n=; ③若a≠1,a≠0時,Sn-aSn=a(1+a+…+an-1-nan), Sn=。 例4.已知,數(shù)列是首項為a,公比也為a的等比數(shù)列,令,求數(shù)列的前項和。 解析:, ①-②得:, 點評:設(shè)數(shù)列的等比數(shù)列

7、,數(shù)列是等差數(shù)列,則數(shù)列的前項和求解,均可用錯位相減法。 題型3:倒序相加 例5.求。 解析:。 ① 又。 ② 所以。 點評:Sn表示從第一項依次到第n項的和,然后又將Sn表示成第n項依次反序到第一項的和,將所得兩式相加,由此得到Sn的一種求和方法。 例6.設(shè)數(shù)列是公差為,且首項為的等差數(shù)列, 求和: 解析:因為, , 。 點評:此類問題還可變換為探索題形:已知數(shù)列的前項和,是否存在等差數(shù)列使得對一切自然數(shù)n都成立。 題型4:其他方法 例7.求數(shù)列1,3+5,7+9+11,13+15+17+19,…前n項和。 解析:本題實質(zhì)是求

8、一個奇數(shù)列的和。在該數(shù)列的前n項中共有個奇數(shù),故。 例8.求數(shù)列1,3+,32+,……,3n+的各項的和。 解析:其和為(1+3+……+3n)+(+……+)==(3n+1-3-n)。 題型5:數(shù)列綜合問題 例9.( 2006年浙江卷)已知函數(shù)=x3+x2,數(shù)列 | xn | (xn > 0)的第一項x1=1,以后各項按如下方式取定:曲線y=在處的切線與經(jīng)過(0,0)和(xn,f(xn))兩點的直線平行(如圖)。 求證:當(dāng)n時:(I);(II)。 解析:(I)因為 所以曲線在處的切線斜率 因為過和兩點的直線斜率是 所以. (II)因為函數(shù)當(dāng)時單調(diào)遞增, 而 所以,即 因

9、此 又因為 令則 因為所以 因此 故 點評:數(shù)列與解析幾何問題結(jié)合在一塊,數(shù)列的通項與線段的長度、點的坐標(biāo)建立起聯(lián)系。 例10.(2006年遼寧卷)已知,其中,設(shè),。 (I) 寫出;(II) 證明:對任意的,恒有。 解析:(I)由已知推得,從而有; (II) 證法1:當(dāng)時, 當(dāng)x>0時, ,所以在[0,1]上為增函數(shù)。 因函數(shù)為偶函數(shù)所以在[-1,0]上為減函數(shù), 所以對任意的, 因此結(jié)論成立。 證法2:當(dāng)時, 當(dāng)x>0時, ,所以在[0,1]上為增函數(shù)。 因函數(shù)為偶函數(shù)所以在[-1,0]上為減函數(shù) 所以對任意的 又因 所以

10、 因此結(jié)論成立。 證法3:當(dāng)時, 當(dāng)x>0時, ,所以在[0,1]上為增函數(shù)。 因為函數(shù)為偶函數(shù)所以在[-1,0]上為減函數(shù)。 所以對任意的 由 對上式兩邊求導(dǎo)得: 因此結(jié)論成立。 點評:數(shù)列與函數(shù)、導(dǎo)數(shù)結(jié)合在一塊,考察數(shù)列是一種特殊的函數(shù)的性質(zhì),其中還要用到數(shù)列的函數(shù)性質(zhì)來解釋問題。 題型6:數(shù)列實際應(yīng)用題 例11.某企業(yè)進(jìn)行技術(shù)改造,有兩種方案,甲方案:一次性貸款10萬元,第一年便可獲利1萬元,以后每年比前一年增加30%的利潤;乙方案:每年貸款1萬元,第一年可獲利1萬元,以后每年比前一年增加5千元;兩種方案的使用期都是10年,到期一次性歸還本

11、息. 若銀行兩種形式的貸款都按年息5%的復(fù)利計算,試比較兩種方案中,哪種獲利更多? (?。? 解析:甲方案是等比數(shù)列,乙方案是等差數(shù)列, ①甲方案獲利:(萬元), 銀行貸款本息:(萬元), 故甲方案純利:(萬元), ②乙方案獲利: (萬元); 銀行本息和: (萬元) 故乙方案純利:(萬元); 綜上可知,甲方案更好。 點評:這是一道比較簡單的數(shù)列應(yīng)用問題,由于本息金與利潤是熟悉的概念,因此只建立通項公式并運(yùn)用所學(xué)過的公式求解。 例12.(2005湖南20)自然狀態(tài)下的魚類是一種可再生資源,為持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強(qiáng)度對魚群總量的影響. 用x

12、n表示某魚群在第n年年初的總量,n∈N*,且x1>0.不考慮其它因素,設(shè)在第n年內(nèi)魚群的繁殖量及捕撈量都與xn成正比,死亡量與xn2成正比,這些比例系數(shù)依次為正常數(shù)a,b,c。 (Ⅰ)求xn+1與xn的關(guān)系式; (Ⅱ)猜測:當(dāng)且僅當(dāng)x1,a,b,c滿足什么條件時,每年年初魚群的總量保持不變?(不要求證明)   (Ⅱ)設(shè)a=2,b=1,為保證對任意x1∈(0,2),都有xn>0,n∈N*,則捕撈強(qiáng)度b的最大允許值是多少?證明你的結(jié)論。 解析:(I)從第n年初到第n+1年初,魚群的繁殖量為axn,被捕撈量為bxn,死亡量為 (II)若每年年初魚群總量保持不變,則xn恒等于x

13、1, n∈N*, 從而由(*)式得: 因為x1>0,所以a>b。 猜測:當(dāng)且僅當(dāng)a>b,且時,每年年初魚群的總量保持不變。 (Ⅲ)若b的值使得xn>0,n∈N* 由xn+1=xn(3-b-xn), n∈N*, 知0

14、=xk(2-xk)>0。 又因為xk+1=xk(2-xk)=-(xk-1)2+1≤1<2, 所以xk+1∈(0, 2),故當(dāng)n=k+1時結(jié)論也成立. 由①、②可知,對于任意的n∈N*,都有xn∈(0,2)。 點評:數(shù)學(xué)歸納法在猜想證明數(shù)列通項和性質(zhì)上有很大的用處,同時該題又結(jié)合了實際應(yīng)用題解決問題。 題型7:課標(biāo)創(chuàng)新題 例13.(2006年北京卷)在數(shù)列中,若是正整數(shù),且,則稱為“絕對差數(shù)列”。 (Ⅰ)舉出一個前五項不為零的“絕對差數(shù)列”(只要求寫出前十項); (Ⅱ)證明:任何“絕對差數(shù)列”中總含有無窮多個為零的項。 解析:(Ⅰ)a1=3,a2=1,a3=2,a4=1,a5

15、=1,a6=0,a7=1,a8=1,a9=0,a10=1.(答案不唯一); (Ⅱ)證明:根據(jù)定義,數(shù)列{an}必在有限項后出現(xiàn)零項.證明如下: 假設(shè){an}中沒有零項,由于an=|an-1-an-2|,所以對于任意的n,都有an≥1,從而 當(dāng)an-1 > an-2時,an = an-1 -an-2 ≤ an-1-1(n≥3); 當(dāng)an-1 < an-2時,an = an-2 - an-1 ≤ an-2-1(n≥3), 即an的值要么比an-1至少小1,要么比an-2至少小1. 令cn=n=1,2,3,……, 則0

16、). 由于c1是確定的正整數(shù),這樣減少下去,必然存在某項c1<0這與cn>0(n=1,2,3……)矛盾.從而{an}必有零項。 若第一次出現(xiàn)的零項為第n項,記an-1=A(A≠0),則自第n項開始,沒三個相鄰的項周期地取值O,A,A,即 所以絕對等差數(shù)列{an}中有無窮多個為零的項。 點評:通過設(shè)置“等差數(shù)列”這一概念加大學(xué)生對情景問題的閱讀、分析和解決問題的能力。 例14.(2005江蘇23)設(shè)數(shù)列{an}的前n項和為Sn,已知a1=1,a2=6,a3=11,且其中A,B為常數(shù)。 (Ⅰ)求A與B的值; (Ⅱ)證明數(shù)列{an}為等差數(shù)列; (Ⅲ)證明不等式對任何正整數(shù)m、n都成

17、立 分析:本題是一道數(shù)列綜合運(yùn)用題,第一問由a1、a2、a3求出s1、s2、s3代入關(guān)系式,即求出A、B;第二問利用公式,推導(dǎo)得證數(shù)列{an}為等差數(shù)列。 解答:(1)由已知,得S1=a1=1,S2=a1+a2=7,S3=a1+a2+a3=18。 由(5n-8)Sn+1-(5n+2)Sn=An+B知: 。 解得A=-20,B=-8。 (Ⅱ)方法1 由(1)得,(5n-8)Sn+1-(5n+2)Sn=-20n-8, ① 所以 (5n-3)Sn+2-(5n+7)Sn+1=-20n-28, ② ②-①,得, (5n-3)Sn+2-(1

18、0n-1)Sn+1+(5n+2)Sn=-20, ③ 所以 (5n+2)Sn+3-(10n+9)Sn+2+(5n+7)Sn+1=-20.④ ④-③,得 (5n+2)Sn+3-(15n+6)Sn+2+(15n+6)Sn+1-(5n+2)Sn=0. 因為 an+1=Sn+1-Sn 所以 (5n+2)an+3-(10n+4)an+2+(5n+2)an+1=0. 又因為 (5n+2), 所以 an+3-2an+2+an+1=0, 即 an+3-an+2=an+2-an+1, . 又

19、 a3-a2=a2-a1=5, 所以數(shù)列為等差數(shù)列。 方法2. 由已知,S1=a1=1, 又(5n-8)Sn+1-(5n+2)Sn=-20n-8,且5n-8, 所以數(shù)列是惟一確定的。 設(shè)bn=5n-4,則數(shù)列為等差數(shù)列,前n項和Tn= 于是 (5n-8)Tn+1-(5n+2)Tn=(5n-8) 由惟一性得bn=a,即數(shù)列為等差數(shù)列。 (Ⅲ)由(Ⅱ)可知,an=1+5(n-1)=5n-4. 要證了 只要證 5amn>1+aman+2 因為 amn=5mn-4,aman=(5m-4

20、)(5n-4)=25mn-20(m+n)+16, 故只要證 5(5mn-4)>1+25mn-20(m+n)+16+2 因為 =20m+20n-37, 所以命題得證。 點評:本題主要考查了等差數(shù)列的有關(guān)知識,不等式的證明方法,考查了分析推理、理性思維能力及相關(guān)運(yùn)算能力等。 五.思維總結(jié) 1.?dāng)?shù)列求和的常用方法 (1)公式法:適用于等差、等比數(shù)列或可轉(zhuǎn)化為等差、等比數(shù)列的數(shù)列; (2)裂項相消法:適用于其中{ }是各項不為0的等差數(shù)列,c為常數(shù);部分無理數(shù)列、含階乘的數(shù)列等; (3)錯位相減法:適用于其中{ }是等差數(shù)列,是各項不為0的等比數(shù)列。 (4

21、)倒序相加法:類似于等差數(shù)列前n項和公式的推導(dǎo)方法. (5)分組求和法 (6)累加(乘)法等。 2.常用結(jié)論 (1) 1+2+3+...+n = (2)1+3+5+...+(2n-1) = (3) (4) (5) (6) 3.?dāng)?shù)學(xué)思想 (1)迭加累加(等差數(shù)列的通項公式的推導(dǎo)方法)若,則……; (2)迭乘累乘(等比數(shù)列的通項公式的推導(dǎo)方法)若,則……; (3)逆序相加(等差數(shù)列求和公式的推導(dǎo)方法); (4)錯位相減(等比數(shù)列求和公式的推導(dǎo)方法)。 普通高中課程標(biāo)準(zhǔn)實驗教科書—數(shù)學(xué) [人教版] 高三新數(shù)學(xué)第一輪復(fù)

22、習(xí)教案(講座31)—不等式性質(zhì)及證明 一.課標(biāo)要求: 1.不等關(guān)系 通過具體情境,感受在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實際背景; 2.基本不等式:(a,b≥0) ①探索并了解基本不等式的證明過程; ②會用基本不等式解決簡單的最大(?。﹩栴}。 二.命題走向 不等式歷來是高考的重點內(nèi)容。對于本將來講,考察有關(guān)不等式性質(zhì)的基礎(chǔ)知識、基本方法,而且還考察邏輯推理能力、分析問題、解決問題的能力。本將內(nèi)容在復(fù)習(xí)時,要在思想方法上下功夫。 預(yù)測2007年的高考命題趨勢: 1.從題型上來看,選擇題、填空題都有可能考察,把不等式的性質(zhì)與函數(shù)、三角結(jié)合起來綜合考察

23、不等式的性質(zhì)、函數(shù)單調(diào)性等,多以選擇題的形式出現(xiàn),解答題以含參數(shù)的不等式的證明、求解為主; 2.利用基本不等式解決像函數(shù)的單調(diào)性或解決有關(guān)最值問題是考察的重點和熱點,應(yīng)加強(qiáng)訓(xùn)練。 三.要點精講 1.不等式的性質(zhì) 比較兩實數(shù)大小的方法——求差比較法 ; ; 。 定理1:若,則;若,則.即。 說明:把不等式的左邊和右邊交換,所得不等式與原不等式異向,稱為不等式的對稱性。 定理2:若,且,則。 說明:此定理證明的主要依據(jù)是實數(shù)運(yùn)算的符號法則及兩正數(shù)之和仍是正數(shù);定理2稱不等式的傳遞性。 定理3:若,則。 說明:(1)不等式的兩邊都加上同一個實數(shù),所得不等式與原不等式同向;

24、 (2)定理3的證明相當(dāng)于比較與的大小,采用的是求差比較法; (3)定理3的逆命題也成立; (4)不等式中任何一項改變符號后,可以把它從一邊移到另一邊。 定理3推論:若。 說明:(1)推論的證明連續(xù)兩次運(yùn)用定理3然后由定理2證出;(2)這一推論可以推廣到任意有限個同向不等式兩邊分別相加,即:兩個或者更多個同向不等式兩邊分別相加,所得不等式與原不等式同向;(3)同向不等式:兩個不等號方向相同的不等式;異向不等式:兩個不等號方向相反的不等式。 定理4.如果且,那么;如果且,那么。 推論1:如果且,那么。 說明:(1)不等式兩端乘以同一個正數(shù),不等號方向不變;乘以同一個負(fù)數(shù),不等號方

25、向改變;(2)兩邊都是正數(shù)的同向不等式的兩邊分別相乘,所得不等式與原不等式同向;(3)推論可以推廣到任意有限個兩邊都是正數(shù)的同向不等式兩邊分別相乘。這就是說,兩個或者更多個兩邊都是正數(shù)的同向不等式兩邊分別相乘,所得不等式與原不等式同向。 推論2:如果, 那么 。 定理5:如果,那么 。 2.基本不等式 定理1:如果,那么(當(dāng)且僅當(dāng)時取“”)。 說明:(1)指出定理適用范圍:;(2)強(qiáng)調(diào)取“”的條件。 定理2:如果是正數(shù),那么(當(dāng)且僅當(dāng)時取“=”) 說明:(1)這個定理適用的范圍:;(2)我們稱的算術(shù)平均數(shù),稱的幾何平均數(shù)。即:兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。 3.常

26、用的證明不等式的方法 (1)比較法 比較法證明不等式的一般步驟:作差—變形—判斷—結(jié)論;為了判斷作差后的符號,有時要把這個差變形為一個常數(shù),或者變形為一個常數(shù)與一個或幾個平方和的形式,也可變形為幾個因式的積的形式,以便判斷其正負(fù)。 (2)綜合法 利用某些已經(jīng)證明過的不等式(例如算術(shù)平均數(shù)與幾何平均數(shù)的定理)和不等式的性質(zhì),推導(dǎo)出所要證明的不等式,這個證明方法叫綜合法;利用某些已經(jīng)證明過的不等式和不等式的性質(zhì)時要注意它們各自成立的條件。 綜合法證明不等式的邏輯關(guān)系是:,及從已知條件出發(fā),逐步推演不等式成立的必要條件,推導(dǎo)出所要證明的結(jié)論。 (3)分析法 證明不等式時,有時可以從求證

27、的不等式出發(fā),分析使這個不等式成立的充分條件,把證明不等式轉(zhuǎn)化為判定這些充分條件是否具備的問題,如果能夠肯定這些充分條件都已具備,那么就可以斷定原不等式成立,這種方法通常叫做分析法。 (1)“分析法”是從求證的不等式出發(fā),分析使這個不等式成立的充分條件,把證明不等式轉(zhuǎn)化為判定這些充分條件是否具備的問題,即“執(zhí)果索因”; (2)綜合過程有時正好是分析過程的逆推,所以常用分析法探索證明的途徑,然后用綜合法的形式寫出證明過程。 四.典例解析 題型1:考查不等式性質(zhì)的題目 例1.(1)(06上海文,14)如果,那么,下列不等式中正確的是( ) (A) (B)

28、(C) (D) (2)(06江蘇,8)設(shè)a、b、c是互不相等的正數(shù),則下列等式中不恒成立的是 (A)  ?。˙) (C)      (D) 解析:(1)答案:A;顯然,但無法判斷與的大??; (2)運(yùn)用排除法,C選項,當(dāng)a-b<0時不成立,運(yùn)用公式一定要注意公式成立的條件,如果,如果a,b是正數(shù),那么 點評:本題主要考查.不等式恒成立的條件,由于給出的是不完全提干,必須結(jié)合選擇支,才能得出正確的結(jié)論。 例2.(1)(2003京春文,1)設(shè)a,b,c,d∈R,且a>b,c>d,則下列結(jié)論中正確的是( ) A.a+c>b+d B.a-c>b-d

29、 C.ac>bd D. (2)(1999上海理,15)若a(b+)2均不能成立 D.不等式和(a+)2>(b+)2均不能成立 解析:(1)答案:A;∵a>b,c>d,∴a+c>b+d; (2)答案:B 解析:∵b<0,∴-b>0,∴a-b>a,又∵a-b<0,a<0,∴。 故不成立。 ∵a|b|,∴故不成立。由此可選B。 另外,A中成立.C與D中(a+)2>(b+)2成立。 其證明如下:∵a

30、|>|b+|, 故(a+)2>(b+)2。 點評:本題考查不等式的基本性質(zhì)。 題型2:基本不等式 例3.(06浙江理,7)“a>b>0”是“ab<”的( ) (A)充分而不必要條件       (B)必要而不充分條件 (C)充分必要條件       (D)既不允分也不必要條件 解析:A;中參數(shù)的取值不只是指可以取非負(fù)數(shù)。均值不等式滿足。 點評:該題考察了基本不等式中的易錯點。 例4.(1)(2001京春)若實數(shù)a、b滿足a+b=2,則3a+3b的最小值是( ) A.18 B.6 C.2 D.2

31、 (2)(2000全國,7)若a>b>1,P=,Q=(lga+lgb),R=lg(),則( ) A.R<P<Q B.P<Q<R C.Q<P<R D.P<R<Q 解析:(1)答案:B;3a+3b≥2=6,當(dāng)且僅當(dāng)a=b=1時取等號。故3a+3b的最小值是6; (2)答案:B;∵lga>lgb>0,∴(lga+lgb)>,即Q>P, 又∵a>b>1,∴, ∴(lga+lgb), 即R>Q,∴有P<Q<R,選B。 點評:本題考查不等式的平均值定理,要注意判斷等號成立的條件。 題型3:不等式的證明 例5.已知a>0,b>0,且a+b=1

32、 求證 (a+)(b+)≥。 證法一: (分析綜合法) 欲證原式,即證4(ab)2+4(a2+b2)-25ab+4≥0, 即證4(ab)2-33(ab)+8≥0,即證ab≤或ab≥8 ∵a>0,b>0,a+b=1,∴ab≥8不可能成立 ∵1=a+b≥2,∴ab≤,從而得證。 證法二: (均值代換法) 設(shè)a=+t1,b=+t2。 ∵a+b=1,a>0,b>0,∴t1+t2=0,|t1|<,|t2|<, 顯然當(dāng)且僅當(dāng)t=0,即a=b=時,等號成立。 證法三:(比較法) ∵a+b=1,a>0,b>0,∴a+b≥2,∴ab≤, 證法四:(綜合法) ∵a+b=1,

33、 a>0,b>0,∴a+b≥2,∴ab≤, 。 證法五:(三角代換法) ∵ a>0,b>0,a+b=1,故令a=sin2α,b=cos2α,α∈(0,), 點評:比較法證不等式有作差(商)、變形、判斷三個步驟,變形的主要方向是因式分解、配方,判斷過程必須詳細(xì)敘述:如果作差以后的式子可以整理為關(guān)于某一個變量的二次式,則考慮用判別式法證。 例6.求使≤a(x>0,y>0)恒成立的a的最小值。 分析:本題解法三利用三角換元后確定a的取值范圍,此時我們習(xí)慣是將x、y與cosθ、sinθ來對應(yīng)進(jìn)行換元,即令=cosθ,=sinθ(0<θ<=,這樣也得a≥sinθ+cosθ,但是這

34、種換元是錯誤的 其原因是:(1)縮小了x、y的范圍;(2)這樣換元相當(dāng)于本題又增加了“x、y=1”這樣一個條件,顯然這是不對的。 除了解法一經(jīng)常用的重要不等式外,解法二的方法也很典型,即若參數(shù)a滿足不等關(guān)系,a≥f(x),則amin=f(x)max 若 a≤f(x),則amax=f(x)min,利用這一基本事實,可以較輕松地解決這一類不等式中所含參數(shù)的值域問題。還有三角換元法求最值用的恰當(dāng)好處,可以把原問題轉(zhuǎn)化。 解法一:由于a的值為正數(shù),將已知不等式兩邊平方, 得:x+y+2≤a2(x+y),即2≤(a2-1)(x+y), ① ∴x,y>0,∴x+y≥2,

35、 ② 當(dāng)且僅當(dāng)x=y時,②中有等號成立。 比較①、②得a的最小值滿足a2-1=1, ∴a2=2,a= (因a>0),∴a的最小值是。 解法二:設(shè) ∵x>0,y>0,∴x+y≥2 (當(dāng)x=y時“=”成立), ∴≤1,的最大值是1。 從而可知,u的最大值為, 又由已知,得a≥u,∴a的最小值為, 解法三:∵y>0, ∴原不等式可化為+1≤a, 設(shè)=tanθ,θ∈(0,)。 ∴tanθ+1≤a,即tanθ+1≤asecθ ∴a≥sinθ+cosθ=sin(θ+), ③ 又∵sin(θ+)的最大值為1(此時θ=)。 由③式可知a的最小值為。 點評:本

36、題考查不等式證明、求最值函數(shù)思想、以及學(xué)生邏輯分析能力。該題實質(zhì)是給定條件求最值的題目,所求a的最值蘊(yùn)含于恒成立的不等式中,因此需利用不等式的有關(guān)性質(zhì)把a(bǔ)呈現(xiàn)出來,等價轉(zhuǎn)化的思想是解決題目的突破口,然后再利用函數(shù)思想和重要不等式等求得最值。 題型4:不等式證明的應(yīng)用 例7.(06浙江理,20)已知函數(shù)f(x)=x+ x,數(shù)列|x|(x>0)的第一項x=1,以后各項按如下方式取定:曲線x=f(x)在處的切線與經(jīng)過(0,0)和(x,f (x))兩點的直線平行(如圖) . 求證:當(dāng)n時,(Ⅰ)x(Ⅱ)。 證明:(I)因為 所以曲線在處的切線斜率 因為過和兩點的直線斜率是 所以. (

37、II)因為函數(shù)當(dāng)時單調(diào)遞增, 而, 所以,即 因此 又因為令則 因為所以 因此故 點評:本題主要考查函數(shù)的導(dǎo)數(shù)、數(shù)列、不等式等基礎(chǔ)知識,以及不等式的證明,同時考查邏輯推理能力。 例8.(2002江蘇,22)已知a>0,函數(shù)f(x)=ax-bx2。 (1)當(dāng)b>0時,若對任意x∈R都有f(x)≤1,證明a≤2; (2)當(dāng)b>1時,證明:對任意x∈[0,1],|f(x)|≤1的充要條件是b-1≤a≤2; (3)當(dāng)0<b≤1時,討論:對任意x∈[0,1],|f(x)|≤1的充要條件。 (Ⅰ)證明:依設(shè),對任意x∈R,都有f(x)≤1, ∵f(x)=, ∴≤1,∵a>0,b

38、>0,∴a≤2. (Ⅱ)證明:必要性:對任意x∈[0,1],|f(x)|≤1-1≤f(x),據(jù)此可以推出-1≤f(1), 即a-b≥-1,∴a≥b-1; 對任意x∈[0,1],|f(x)|≤1f(x)≤1,因為b>1,可以推出f()≤1,即a·-1≤1,∴a≤2; ∴b-1≤a≤2. 充分性:因為b>1,a≥b-1,對任意x∈[0,1], 可以推出:ax-bx2≥b(x-x2)-x≥-x≥-1,即ax-bx2≥-1; 因為b>1,a≤2,對任意x∈[0,1], 可以推出ax-bx2≤2x-bx2≤1, 即ax-bx2≤1。 ∴-1≤f(x)≤1。 綜上,當(dāng)b>1時,對任意

39、x∈[0,1],|f(x)|≤1的充要條件是b-1≤a≤2. (Ⅲ)解:因為a>0,0<b≤1時,對任意x∈[0,1]: f(x)=ax-bx2≥-b≥-1,即f(x)≥-1; f(x)≤1f(1)≤1a-b≤1,即a≤b+1, a≤b+1f(x)≤(b+1)x-bx2≤1,即f(x)≤1。 所以,當(dāng)a>0,0<b≤1時,對任意x∈[0,1],|f(x)|≤1的充要條件是a≤b+1. 22.解:原式(x-a)(x-a2)<0,∴x1=a,x2=a2。 當(dāng)a=a2時,a=0或a=1,x∈,當(dāng)a<a2時,a>1或a<0,a<x<a2, 當(dāng)a>a2時0<a<1,a2<x<a, ∴當(dāng)

40、a<0時a<x<a2,當(dāng)0<a<1時,a2<x<a,當(dāng)a>1時,a<x<a2,當(dāng)a=0或a=1時,x∈。 點評:此題考查不等式的證明及分類討論思想。 題型5:課標(biāo)創(chuàng)新題 例9.(06上海理,12)三個同學(xué)對問題“關(guān)于的不等式+25+|-5|≥在[1,12]上恒成立,求實數(shù)的取值范圍”提出各自的解題思路。 甲說:“只須不等式左邊的最小值不小于右邊的最大值”; 乙說:“把不等式變形為左邊含變量的函數(shù),右邊僅含常數(shù),求函數(shù)的最值”; 丙說:“把不等式兩邊看成關(guān)于的函數(shù),作出函數(shù)圖像”; 參考上述解題思路,你認(rèn)為他們所討論的問題的正確結(jié)論,即的取值范圍是 。 答案:a≤10。

41、 點評:該題通過設(shè)置情景,將不等式知識蘊(yùn)含在一個對話情景里面,考查學(xué)生閱讀能力、分析問題、解決問題的能力。 例10.(06湖南文,20)在m(m≥2)個不同數(shù)的排列P1P2…Pn中,若1≤i<j≤m時Pi>Pj(即前面某數(shù)大于后面某數(shù)),則稱Pi與Pj構(gòu)成一個逆序. 一個排列的全部逆序的總數(shù)稱為該排列的逆序數(shù). 記排列的逆序數(shù)為an,如排列21的逆序數(shù),排列321的逆序數(shù)。 (Ⅰ)求a4、a5,并寫出an的表達(dá)式; (Ⅱ)令,證明,n=1,2,…。 解 (Ⅰ)由已知得,。 (Ⅱ)因為, 所以. 又因為, 所以              =。 綜上,。 點評:該題創(chuàng)意新,知識

42、復(fù)合到位,能很好的反映當(dāng)前的高考趨勢。 五.思維總結(jié) 1.不等式證明常用的方法有:比較法、綜合法和分析法,它們是證明不等式的最基本的方法。 (1)比較法證不等式有作差(商)、變形、判斷三個步驟,變形的主要方向是因式分解、配方,判斷過程必須詳細(xì)敘述:如果作差以后的式子可以整理為關(guān)于某一個變量的二次式,則考慮用判別式法證; (2)綜合法是由因?qū)Ч治龇ㄊ菆?zhí)果索因,兩法相互轉(zhuǎn)換,互相滲透,互為前提,充分運(yùn)用這一辯證關(guān)系,可以增加解題思路,開擴(kuò)視野。 2.不等式證明還有一些常用的方法:換元法、放縮法、反證法、函數(shù)單調(diào)性法、判別式法、數(shù)形結(jié)合法等。換元法主要有三角代換,均值代換兩種,在應(yīng)用

43、換元法時,要注意代換的等價性。放縮性是不等式證明中最重要的變形方法之一,放縮要有的放矢,目標(biāo)可以從要證的結(jié)論中考查。有些不等式,從正面證如果不易說清楚,可以考慮反證法 凡是含有“至少”、“惟一”或含有其他否定詞的命題,適宜用反證法。 證明不等式時,要依據(jù)題設(shè)、題目的特點和內(nèi)在聯(lián)系,選擇適當(dāng)?shù)淖C明方法,要熟悉各種證法中的推理思維,并掌握相應(yīng)的步驟、技巧和語言特點。 3.幾個重要不等式 (1) (2)(當(dāng)僅當(dāng)a=b時取等號) (3)如果a,b都是正數(shù),那么 (當(dāng)僅當(dāng)a=b時取等號) 最值定理:若則: 如果P是定值, 那么當(dāng)x=y時,S的值最?。蝗绻鸖是定值, 那么當(dāng)x=y時,P的值最大; 注意:前提:“一正、二定、三相等”,如果沒有滿足前提,則應(yīng)根據(jù)題目創(chuàng)設(shè)情境;還要注意選擇恰當(dāng)?shù)墓剑弧昂投?積最大,積定 和最小”,可用來求最值;均值不等式具有放縮功能,如果有多處用到,請注意每處取等的條件是否一致。 (當(dāng)僅當(dāng)a=b=c時取等號); (當(dāng)僅當(dāng)a=b時取等號)。 第 25 頁 共 25 頁

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!