《新課標》高三數(shù)學(人教版)第一輪復習單元講座 第01講 集合
《《新課標》高三數(shù)學(人教版)第一輪復習單元講座 第01講 集合》由會員分享,可在線閱讀,更多相關《《新課標》高三數(shù)學(人教版)第一輪復習單元講座 第01講 集合(26頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、《新課標》高三數(shù)學(人教版)第一輪復習單元講座 第一講 集 合 一.課標要求: 1.集合的含義與表示 (1)通過實例,了解集合的含義,體會元素與集合的“屬于”關系; (2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用; 2.集合間的基本關系 (1)理解集合之間包含與相等的含義,能識別給定集合的子集; (2)在具體情境中,了解全集與空集的含義; 3.集合的基本運算 (1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集與交集; (2)理解在給定集合中一個子集的補集的含義,會求給定子集
2、的補集; (3)能使用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。 二.命題走向 有關集合的高考試題,考查重點是集合與集合之間的關系,近年試題加強了對集合的計算化簡的考查,并向無限集發(fā)展,考查抽象思維能力,在解決這些問題時,要注意利用幾何的直觀性,注意運用Venn圖解題方法的訓練,注意利用特殊值法解題,加強集合表示方法的轉換和化簡的訓練??荚囆问蕉嘁砸坏肋x擇題為主,分值5分。 預測2007年高考將繼續(xù)體現(xiàn)本章知識的工具作用,多以小題形式出現(xiàn),也會滲透在解答題的表達之中,相對獨立。具體題型估計為: (1)題型是1個選擇題或1個填空題; (2)熱點是集合的基本概念
3、、運算和工具作用。 三.要點精講 1.集合:某些指定的對象集在一起成為集合。 (1)集合中的對象稱元素,若a是集合A的元素,記作;若b不是集合A的元素,記作; (2)集合中的元素必須滿足:確定性、互異性與無序性; 確定性:設A是一個給定的集合,x是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立; 互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應重復出現(xiàn)同一元素; 無序性:集合中不同的元素之間沒有地位差異,集合不同于元素的排列順序無關; (3)表示一個集合可用列舉法、描述法或圖示法; 列舉法:把集合中
4、的元素一一列舉出來,寫在大括號內; 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。 具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。 注意:列舉法與描述法各有優(yōu)點,應該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。 (4)常用數(shù)集及其記法: 非負整數(shù)集(或自然數(shù)集),記作N; 正整數(shù)集,記作N*或N+; 整數(shù)集,記作Z; 有理數(shù)集,記作Q; 實數(shù)集,記作R。 2.集合的包含關系: (1)集合A的任何一個元素都是集合B的元素,則稱A
5、是B的子集(或B包含A),記作AB(或); 集合相等:構成兩個集合的元素完全一樣。若AB且BA,則稱A等于B,記作A=B;若AB且A≠B,則稱A是B的真子集,記作A B; (2)簡單性質:1)AA;2)A;3)若AB,BC,則AC;4)若集合A是n個元素的集合,則集合A有2n個子集(其中2n-1個真子集); 3.全集與補集: (1)包含了我們所要研究的各個集合的全部元素的集合稱為全集,記作U; (2)若S是一個集合,AS,則,=稱S中子集A的補集; (3)簡單性質:1)()=A;2)S=,=S。 4.交集與并集: (1)一般地,由屬于集合A且屬于集合B的元素所組成的集
6、合,叫做集合A與B的交集。交集。 (2)一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,稱為集合A與B的并集。。 注意:求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結合的思想方法。 5.集合的簡單性質: (1) (2) (3) (4); (5)(A∩B)=(A)∪(B),(A∪B)=(A)∩(B)。 四.典例解析 題型1:集合的概念 例1.設集合,若,則下列關系正確的是( ) A.
7、 B. C. D. 解:由于中只能取到所有的奇數(shù),而中18為偶數(shù)。則。選項為D; 點評:該題考察了元素與集合、集合與集合之間的關系。首先應該分清楚元素與集合之間是屬于與不屬于的關系,而集合之間是包含與不包含的關系。 例2.設集合P={m|-1<m≤0,Q={m∈R|mx2+4mx-4<0對任意實數(shù)x恒成立,則下列關系中成立的是( ) A.PQ B.QP C.P=Q D.P∩Q=Q 解:Q={m∈R|mx2+4mx-4<0對任意實數(shù)x恒成立=,對m分類: ①m=0時,-4<0恒成立; ②m<0時,需Δ=(4m)2-4×m×(-4)<0,
8、解得m<0。 綜合①②知m≤0, ∴Q={m∈R|m≤0}。 答案為A。 點評:該題考察了集合間的關系,同時考察了分類討論的思想。集合中含有參數(shù)m,需要對參數(shù)進行分類討論,不能忽略m=0的情況。 題型2:集合的性質 例3.(2000廣東,1)已知集合A={1,2,3,4},那么A的真子集的個數(shù)是( ) A.15 B.16 C.3 D.4 解:根據(jù)子集的計算應有24-1=15(個)。選項為A; 點評:該題考察集合子集個數(shù)公式。注意求真子集時千萬不要忘記空集是任何非空集合的真子集。同時,A不是A的真子集。 變式題:同時滿足條件:①②若,這樣的集合M有多少個
9、,舉出這些集合來。 答案:這樣的集合M有8個。 例4.已知全集,A={1,}如果,則這樣的實數(shù)是否存在?若存在,求出,若不存在,說明理由。 解:∵; ∴,即=0,解得 當時,,為A中元素; 當時, 當時, ∴這樣的實數(shù)x存在,是或。 另法:∵ ∴, ∴=0且 ∴或。 點評:該題考察了集合間的關系以及集合的性質。分類討論的過程中“當時,”不能滿足集合中元素的互異性。此題的關鍵是理解符號是兩層含義:。 變式題:已知集合,,,求的值。 解:由可知, (1),或(2) 解(1)得, 解(2)得, 又因為當時,與題意不符, 所以,。 題型3:集合的運算 例5.
10、(06全國Ⅱ理,2)已知集合M={x|x<3,N={x|log2x>1},則M∩N=( ) A. B.{x|0<x<3 C.{x|1<x<3 D.{x|2<x<3 解:由對數(shù)函數(shù)的性質,且2>1,顯然由易得。從而。故選項為D。 點評:該題考察了不等式和集合交運算。 例6.(06安徽理,1)設集合,,則等于( ) A. B. C. D. 解:,,所以,故選B。 點評:該題考察了集合的交、補運算。 題型4:圖解法解集合問題 例7.(2003上海春,5)已知集合A={x||
11、x|≤2,x∈R},B={x|x≥a},且AB,則實數(shù)a圖 的取值范圍是____ _。 解:∵A={x|-2≤x≤2},B={x|x≥a},又AB,利用數(shù)軸上覆蓋關系:如圖所示,因此有a≤-2。 點評:本題利用數(shù)軸解決了集合的概念和集合的關系問題。 例8.(1996全國理,1)已知全集I=N*,集合A={x|x=2n,n∈N*},B={x|x=4n,n∈N},則( ) A.I=A∪B B.I=(A)∪B C.I=A∪(B ) D.I=(A)∪(B) 解:方法一:A中元素是非2的倍數(shù)的自然數(shù),B中元素是非4的倍數(shù)的自然數(shù),顯然,只有C選項正確.
12、圖 方法二:因A={2,4,6,8…},B={4,8,12,16,…},所以B={1,2,3,5,6,7,9…},所以I=A∪B,故答案為C. 方法三:因BA,所以()A()B,()A∩(B)=A,故I=A∪(A)=A∪(B)。 方法四:根據(jù)題意,我們畫出Venn圖來解,易知BA,如圖:可以清楚看到I=A∪(B)是成立的。 點評:本題考查對集合概念和關系的理解和掌握,注意數(shù)形結合的思想方法,用無限集考查,提高了對邏輯思維能力的要求。 題型5:集合的應用 例9.向50名學生調查對A、B兩事件的態(tài)度,有如下結果 贊成A的人數(shù)是全體的五分之三,其余的不贊成,贊成B的比贊成A的多3人,其余
13、的不贊成;另外,對A、B都不贊成的學生數(shù)比對A、B都贊成的學生數(shù)的三分之一多1人。問對A、B都贊成的學生和都不贊成的學生各有多少人? 解:贊成A的人數(shù)為50×=30,贊成B的人數(shù)為30+3=33,如上圖,記50名學生組成的集合為U,贊成事件A的學生全體為集合A;贊成事件B的學生全體為集合B。 設對事件A、B都贊成的學生人數(shù)為x,則對A、B都不贊成的學生人數(shù)為+1,贊成A而不贊成B的人數(shù)為30-x,贊成B而不贊成A的人數(shù)為33-x。依題意(30-x)+(33-x)+x+(+1)=50,解得x=21。所以對A、B都贊成的同學有21人,都不贊成的有8人。 點評:在集合問題中,有一些常用的方法如
14、數(shù)軸法取交并集,韋恩圖法等,需要考生切實掌握。本題主要強化學生的這種能力。解答本題的閃光點是考生能由題目中的條件,想到用韋恩圖直觀地表示出來。本題難點在于所給的數(shù)量關系比較錯綜復雜,一時理不清頭緒,不好找線索。畫出韋恩圖,形象地表示出各數(shù)量關系間的聯(lián)系。 例10.求1到200這200個數(shù)中既不是2的倍數(shù),又不是3的倍數(shù),也不是5的倍數(shù)的自然數(shù)共有多少個? 解:如圖先畫出Venn圖,不難看出不符合條件 的數(shù)共有(200÷2)+(200÷3)+(200÷5) -(200÷10)-(200÷6)-(200÷15) +(20
15、0÷30)=146
所以,符合條件的數(shù)共有200-146=54(個)
點評:分析200個數(shù)分為兩類,即滿足題設條件的和不滿足題設條件的兩大類,而不滿足條件的這一類標準明確而簡單,可考慮用扣除法。
題型7:集合綜合題
例11.(1999上海,17)設集合A={x||x-a|<2},B={x|<1},若AB,求實數(shù)a的取值范圍。
解:由|x-a|<2,得a-2 16、概念及運算,解絕對值不等式、分式不等式和不等式組的基本方法。在解題過程中要注意利用不等式的解集在數(shù)軸上的表示方法.體現(xiàn)了數(shù)形結合的思想方法。
例12.已知{an}是等差數(shù)列,d為公差且不為0,a1和d均為實數(shù),它的前n項和記作Sn,設集合A={(an,)|n∈N*},B={(x,y)| x2-y2=1,x,y∈R}。
試問下列結論是否正確,如果正確,請給予證明;如果不正確,請舉例說明:
(1)若以集合A中的元素作為點的坐標,則這些點都在同一條直線上;
(2)A∩B至多有一個元素;
(3)當a1≠0時,一定有A∩B≠。
解:(1)正確;在等差數(shù)列{an}中,Sn=,則(a1+an), 17、這表明點(an,)的坐標適合方程y(x+a1),于是點(an, )均在直線y=x+a1上。
(2)正確;設(x,y)∈A∩B,則(x,y)中的坐標x,y應是方程組的解,由方程組消去y得:2a1x+a12=-4(*),
當a1=0時,方程(*)無解,此時A∩B=;
當a1≠0時,方程(*)只有一個解x=,此時,方程組也只有一解,故上述方程組至多有一解。
∴A∩B至多有一個元素。
(3)不正確;取a1=1,d=1,對一切的x∈N*,有an=a1+(n-1)d=n>0, >0,這時集合A中的元素作為點的坐標,其橫、縱坐標均為正,另外,由于a1=1≠0 如果A∩B≠,那么據(jù)(2)的結論,A∩ 18、B中至多有一個元素(x0,y0),而x0=<0,y0=<0,這樣的(x0,y0)A,產生矛盾,故a1=1,d=1時A∩B=,所以a1≠0時,一定有A∩B≠是不正確的。
點評:該題融合了集合、數(shù)列、直線方程的知識,屬于知識交匯題。
變式題:解答下述問題:
(Ⅰ)設集合,,求實數(shù)m的取值范圍.
分析:關鍵是準確理解 的具體意義,首先要從數(shù)學意義上解釋 的意義,然后才能提出解決問題的具體方法。
解:
的取值范圍是UM={m|m<-2}.
(解法三)設這是開口向上的拋物線,,則二次函數(shù)性質知命題又等價于
注意,在解法三中,f(x)的對稱軸的位置起了關鍵作用,否 19、則解答沒有這么簡單。
(Ⅱ)已知兩個正整數(shù)集合A={a1,a2,a3,a4},
、B.
分析:命題中的集合是列舉法給出的,只需要根據(jù)“交、并”的意義及元素的基本性質解決,注意“正整數(shù)”這個條件的運用,
(Ⅲ)
分析:正確理解
要使,
由
當k=0時,方程有解,不合題意;
當①
又由
由②,
由①、②得
∵b為自然數(shù),∴b=2,代入①、②得k=1
點評:這是一組關于集合的“交、并”的常規(guī)問題,解決這些問題的關鍵是準確理解問題條件的具體的數(shù)學內容,才能由此尋求解決的方法。
題型6:課標創(chuàng)新題
例13.七名學生排成一排,甲不站在最左端和 20、最右端的兩個位置之一,乙、丙都不能站在正中間的位置,則有多少不同的排法?
解:設集合A={甲站在最左端的位置},
B={甲站在最右端的位置},
C={乙站在正中間的位置},
D={丙站在正中間的位置},
則集合A、B、C、D的關系如圖所示,
∴不同的排法有種.
點評:這是一道排列應用問題,如果直接分類、分步解答需要一定的基本功,容易錯,若考慮運用集合思想解答,則比較容易理解。上面的例子說明了集合思想的一些應用,在今后的學習中應注意總結集合應用的經(jīng)驗。
例14.A是由定義在上且滿足如下條件的函數(shù)組成的集合:①對任意,都有 ; ②存在常數(shù),使得對任意的,都有
(1)設,證明: 21、
(2)設,如果存在,使得,那么這樣的是唯一的;
(3)設,任取,令證明:給定正整數(shù)k,對任意的正整數(shù)p,成立不等式。
解:
對任意,,,,所以
對任意的,
,
,
所以0<,
令=,
,
所以
反證法:設存在兩個使得,。
則由,
得,所以,矛盾,故結論成立。
,
所以
+…
。
點評:函數(shù)的概念是在集合理論上發(fā)展起來的,而此題又將函數(shù)的性質融合在集合的關系當中,題目比較新穎。
五.思維總結
集合知識可以使我們更好地理解數(shù)學中廣泛使用的集合語言,并用集合語言表達數(shù)學問題,運用集合觀點去研究和解決數(shù)學問題。
1.學習集合的基礎能力是準確描述 22、集合中的元素,熟練運用集合的各種符號,如、、、、=、A、∪,∩等等;
2.強化對集合與集合關系題目的訓練,理解集合中代表元素的真正意義,注意利用幾何直觀性研究問題,注意運用Venn圖解題方法的訓練,加強兩種集合表示方法轉換和化簡訓練;解決集合有關問題的關鍵是準確理解集合所描述的具體內容(即讀懂問題中的集合)以及各個集合之間的關系,常常根據(jù)“Venn圖”來加深對集合的理解,一個集合能化簡(或求解),一般應考慮先化簡(或求解);
3.確定集合的“包含關系”與求集合的“交、并、補”是學習集合的中心內容,解決問題時應根據(jù)問題所涉及的具體的數(shù)學內容來尋求方法。
① 區(qū)別∈與、與、a與{a}、φ與 23、{φ}、{(1,2)}與{1,2};
② AB時,A有兩種情況:A=φ與A≠φ。
③若集合A中有n個元素,則集合A的所有不同的子集個數(shù)為,所有真子集的個數(shù)是-1, 所有非空真子集的個數(shù)是。
④區(qū)分集合中元素的形式:
如;
;
;
;
;
;
。
⑤空集是指不含任何元素的集合。、和的區(qū)別;0與三者間的關系。空集是任何集合的子集,是任何非空集合的真子集。條件為,在討論的時候不要遺忘了的情況。
⑥符號“”是表示元素與集合之間關系的,立體幾何中的體現(xiàn)點與直線(面)的關系 ;符號“”是表示集合與集合之間關系的,立體幾何中的體現(xiàn)面與直線(面)的關系。
邏輯是研究思維形式及其規(guī)律的 24、一門學科,是人們認識和研究問題不可缺少的工具,是為了培養(yǎng)學生的推理技能,發(fā)展學生的思維能力。
普通高中課程標準實驗教科書—數(shù)學 [人教版]
高三新數(shù)學第一輪復習教案(講座3)—函數(shù)的基本性質
一.課標要求
1.通過已學過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調性、最大(?。┲导捌鋷缀我饬x;
2.結合具體函數(shù),了解奇偶性的含義;
二.命題走向
從近幾年來看,函數(shù)性質是高考命題的主線索,不論是何種函數(shù),必須與函數(shù)性質相關聯(lián),因此在復習中,針對不同的函數(shù)類別及綜合情況,歸納出一定的復習線索。
預測2007年高考的出題思路是:通過研究函數(shù)的定義域、值域,進而研究函數(shù)的單調性、奇偶 25、性以及最值。
預測明年的對本講的考察是:
(1)考察函數(shù)性質的選擇題1個或1個填空題,還可能結合導數(shù)出研究函數(shù)性質的大題;
(2)以中等難度、題型新穎的試題綜合考察函數(shù)的性質,以組合形式、一題多角度考察函數(shù)性質預計成為新的熱點。
三.要點精講
1.奇偶性
(1)定義:如果對于函數(shù)f(x)定義域內的任意x都有f(-x)=-f(x),則稱f(x)為奇函數(shù);如果對于函數(shù)f(x)定義域內的任意x都有f(-x)=f(x),則稱f(x)為偶函數(shù)。
如果函數(shù)f(x)不具有上述性質,則f(x)不具有奇偶性.如果函數(shù)同時具有上述兩條性質,則f(x)既是奇函數(shù),又是偶函數(shù)。
注意:
函數(shù)是奇函 26、數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質;
由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱)。
(2)利用定義判斷函數(shù)奇偶性的格式步驟:
首先確定函數(shù)的定義域,并判斷其定義域是否關于原點對稱;
確定f(-x)與f(x)的關系;
作出相應結論:
若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);
若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù)。
(3)簡單性質:
①圖象的對稱性質:一個函數(shù)是奇函數(shù) 27、的充要條件是它的圖象關于原點對稱;一個函數(shù)是偶函數(shù)的充要條件是它的圖象關于y軸對稱;
②設,的定義域分別是,那么在它們的公共定義域上:
奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇
2.單調性
(1)定義:一般地,設函數(shù)y=f(x)的定義域為I, 如果對于定義域I內的某個區(qū)間D內的任意兩個自變量x1,x2,當x1 28、 29、驟
利用定義證明函數(shù)f(x)在給定的區(qū)間D上的單調性的一般步驟:
任取x1,x2∈D,且x1 30、如果存在實數(shù)M滿足:①對于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0) = M。那么,稱M是函數(shù)y=f(x)的最大值。
最小值:一般地,設函數(shù)y=f(x)的定義域為I,如果存在實數(shù)M滿足:①對于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0) = M。那么,稱M是函數(shù)y=f(x)的最大值。
注意:
函數(shù)最大(?。┦紫葢撌悄骋粋€函數(shù)值,即存在x0∈I,使得f(x0) = M;
函數(shù)最大(小)應該是所有函數(shù)值中最大(?。┑?,即對于任意的x∈I,都有f(x)≤M(f(x)≥M)。
(2)利用函數(shù)單調性的判斷函數(shù)的最大(?。┲档姆椒ǎ?
利用二次函數(shù)的 31、性質(配方法)求函數(shù)的最大(?。┲?;
利用圖象求函數(shù)的最大(?。┲担?
利用函數(shù)單調性的判斷函數(shù)的最大(?。┲担?
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調遞增,在區(qū)間[b,c]上單調遞減則函數(shù)y=f(x)在x=b處有最大值f(b);
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調遞減,在區(qū)間[b,c]上單調遞增則函數(shù)y=f(x)在x=b處有最小值f(b);
4.周期性
(1)定義:如果存在一個非零常數(shù)T,使得對于函數(shù)定義域內的任意x,都有f(x+T)= f(x),則稱f(x)為周期函數(shù);
(2)性質:①f(x+T)= f(x)常常寫作若f(x)的周期中,存在一個最小的正數(shù),則稱它 32、為f(x)的最小正周期;②若周期函數(shù)f(x)的周期為T,則f(ωx)(ω≠0)是周期函數(shù),且周期為。
四.典例解析
題型一:判斷函數(shù)的奇偶性
例1.討論下述函數(shù)的奇偶性:
解:(1)函數(shù)定義域為R,
,
∴f(x)為偶函數(shù);
(另解)先化簡:,顯然為偶函數(shù);從這可以看出,化簡后再解決要容易得多。
(2)須要分兩段討論:
①設
②設
③當x=0時f(x)=0,也滿足f(-x)=-f(x);
由①、②、③知,對x∈R有f(-x) =-f(x), ∴f(x)為奇函數(shù);
(3),∴函數(shù)的定義域為,
∴f(x)=log21=0(x=±1) ,即f(x)的 33、圖象由兩個點 A(-1,0)與B(1,0)組成,這兩點既關于y軸對稱,又關于原點對稱,∴f(x)既是奇函數(shù),又是偶函數(shù);
(4)∵x2≤a2, ∴要分a >0與a <0兩類討論,
①當a >0時,
,∴當a >0時,f(x)為奇函數(shù);
既不是奇函數(shù),也不是偶函數(shù).
點評:判斷函數(shù)的奇偶性是比較基本的問題,難度不大,解決問題時應先考察函數(shù)的定義域,若函數(shù)的解析式能化簡,一般應考慮先化簡,但化簡必須是等價變換過程(要保證定義域不變)。
例2.(2002天津文.16)設函數(shù)f(x)在(-∞,+∞)內有定義,下列函數(shù):①y=-|f(x)|;②y=xf(x2);③y=-f(-x); 34、④y=f(x)-f(-x)。
必為奇函數(shù)的有_____(要求填寫正確答案的序號)
答案:②④;解析:y=(-x)f[(-x)2]=-xf(x2)=-y;y=f(-x)-f(x)=-y。
點評:該題考察了判斷抽象函數(shù)奇偶性的問題。對學生邏輯思維能力有較高的要求。
題型二:奇偶性的應用
例3.(2002上海春,4)設f(x)是定義在R上的奇函數(shù),若當x≥0時,f(x)=log3(1+x),則f(-2)=____ _。
答案:-1;解:因為x≥0時,f(x)=log3(1+x),又f(x)為奇函數(shù),所以f(-x)=-f(x),設x<0,所以f(x)=-f(-x)=-f(1-x),所以 35、f(-2)=-log33=-1。
點評:該題考察函數(shù)奇偶性的應用。解題思路是利用函數(shù)的奇偶性得到函數(shù)在對稱區(qū)域上函數(shù)的取值。
例4.已知定義在R上的函數(shù)y= f(x)滿足f(2+x)= f(2-x),且f(x)是偶函數(shù),當x∈[0,2]時,f(x)=2x-1,求x∈[-4,0]時f(x)的表達式。
解:由條件可以看出,應將區(qū)間[-4,0]分成兩段考慮:
①若x∈[-2,0],-x∈[0,2],
∵f(x)為偶函數(shù),
∴當x∈[-2,0]時,f(x)= f(-x)=-2x-1,
②若x∈[-4,-2,
∴4+ x∈[0,2,
∵f(2+x)+ f(2-x),
∴f(x)= f 36、(4-x),
∴f(x)= f(-x)= f[4-(-x)]= f(4+x)=2(x+4)-1=2x+7;
綜上,
點評:結合函數(shù)的數(shù)字特征,借助函數(shù)的奇偶性,處理函數(shù)的解析式。
題型三:判斷證明函數(shù)的單調性
例5.(2001天津,19)設,是上的偶函數(shù)。
(1)求的值;(2)證明在上為增函數(shù)。
解:(1)依題意,對一切,有,即。
∴對一切成立,則,∴,
∵,∴。
(2)(定義法)設,則
,
由,得,,
∴,
即,∴在上為增函數(shù)。
(導數(shù)法)∵,
∴
∴在上為增函數(shù)
點評:本題用了兩種方法:定義法和導數(shù)法,相比之下導數(shù)法比定義法更為簡潔。
例6.已知f(x 37、)是定義在R上的增函數(shù),對x∈R有f(x)>0,且f(5)=1,設F(x)= f(x)+,討論F (x)的單調性,并證明你的結論。
解:這是抽角函數(shù)的單調性問題,應該用單調性定義解決。
在R上任取x1、x2,設x1 38、f(x1)f(x2)>1,
∴>0,
∴ F(x2)> F (x1);
綜上,F(xiàn) (x)在(-∞,5)為減函數(shù),在(5,+∞)為增函數(shù)。
點評:該題屬于判斷抽象函數(shù)的單調性。抽象函數(shù)問題是函數(shù)學習中一類比較特殊的問題,其基本能力是變量代換、換元等,應熟練掌握它們的這些特點。
題型四:函數(shù)的單調區(qū)間
例7.(2001春季北京、安徽,12)設函數(shù)f(x)=(a>b>0),求f(x)的單調區(qū)間,并證明f(x)在其單調區(qū)間上的單調性。
.解:在定義域內任取x1<x2,
∴f(x1)-f(x2)=
,
∵a>b>0,∴b-a<0,x1-x2<0,
只有當x1<x2<-b或-b< 39、x1<x2時函數(shù)才單調.
當x1<x2<-b或-b<x1<x2時f(x1)-f(x2)>0.
∴f(x)在(-b,+∞)上是單調減函數(shù),在(-∞,-b)上是單調減函數(shù).
點評:本小題主要考查了函數(shù)單調性的基本知識。對于含參數(shù)的函數(shù)應用函數(shù)單調性的定義求函數(shù)的單調區(qū)間。
例8.(1)求函數(shù)的單調區(qū)間;
(2)已知若試確定的單調區(qū)間和單調性。
解:(1)函數(shù)的定義域為,
分解基本函數(shù)為、
顯然在上是單調遞減的,而在上分別是單調遞減和單調遞增的。根據(jù)復合函數(shù)的單調性的規(guī)則:
所以函數(shù)在上分別單調遞增、單調遞減。
(2)解法一:函數(shù)的定義域為R,
分解基本函數(shù)為和。
顯然在上是 40、單調遞減的,上單調遞增;
而在上分別是單調遞增和單調遞減的。且,
根據(jù)復合函數(shù)的單調性的規(guī)則:
所以函數(shù)的單調增區(qū)間為;單調減區(qū)間為。
解法二:,
,
令 ,得或,
令 ,或
∴單調增區(qū)間為;單調減區(qū)間為。
點評:該題考察了復合函數(shù)的單調性。要記住“同向增、異向減”的規(guī)則。
題型五:單調性的應用
例9.已知偶函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,解不等式f[log2(x2+5x+4)]≥0。
解:∵f(2)=0,∴原不等式可化為f[log2(x2+5x+4)]≥f(2)。
又∵f(x)為偶函數(shù),且f(x)在(0,+∞)上為增函數(shù),
∴f(x)在( 41、-∞,0)上為減函數(shù)且f(-2)=f(2)=0。
∴不等式可化為 log2(x2+5x+4)≥2 ?、?
或 log2(x2+5x+4)≤-2 ②
由①得x2+5x+4≥4,∴x≤-5或x≥0 ③
由②得0<x2+5x+4≤得
≤x<-4或-1<x≤ ④
由③④得原不等式的解集為
{x|x≤-5或≤x≤-4或-1<x≤或x≥0。
例10.已知奇函數(shù)f(x)的定義域為R,且f(x)在[0,+∞]上是增函數(shù),是否存在實數(shù)m,使f(cos2θ-3)+f(4m-2mcosθ)>f(0)對所有θ∈[0,]都成立?若存在,求出符合條件的所有實數(shù)m的范 42、圍,若不存在,說明理由。
解:∵f(x)是R上的奇函數(shù),且在[0,+∞]上是增函數(shù),
∴f(x)是R上的增函數(shù),于是不等式可等價地轉化為f(cos2θ-3)>f(2mcosθ-4m),
即cos2θ-3>2mcosθ-4m,即cos2θ-mcosθ+2m-2>0。
設t=cosθ,則問題等價地轉化為函數(shù)
g(t)=t2-mt+2m-2=(t-)2-+2m-2在[0,1]上的值恒為正,又轉化為函數(shù)g(t)在[0,1]上的最小值為正。
∴當<0,即m<0時,g(0)=2m-2>0m>1與m<0不符;
當0≤≤1時,即0≤m≤2時,g(m)=-+2m-2>04-2 43、4-2 44、x)的奇偶性;(2)求f(x)的最小值。
解:(1)當a=0時,函數(shù)f(-x)=(-x)2+|-x|+1=f(x),此時f(x)為偶函數(shù)。
當a≠0時,f(a)=a2+1,f(-a)=a2+2|a|+1,f(-a)≠f(a),f(-a)≠-f(a)。
此時函數(shù)f(x)既不是奇函數(shù),也不是偶函數(shù)。
(2)①當x≤a時,函數(shù)f(x)=x2-x+a+1=(x-)2+a+。
若a≤,則函數(shù)f(x)在(-∞,a)上單調遞減,從而,函數(shù)f(x)在(-∞,a)上的最小值為f(a)=a2+1。
若a>,則函數(shù)f(x)在(-∞,a上的最小值為f()=+a,且f()≤
f(a)。
②當x≥a時,函 45、數(shù)f(x)=x2+x-a+1=(x+)2-a+。
若a≤-,則函數(shù)f(x)在[a,+∞上的最小值為f(-)=-a,且f(-)≤f(a)。
若a>-,則函數(shù)f(x)在[a,+∞]上單調遞增,從而,函數(shù)f(x)在[a,+∞]上的最小值為f(a)=a2+1。
綜上,當a≤-時,函數(shù)f(x)的最小值是-a。
當-<a≤時,函數(shù)f(x)的最小值是a2+1。
當a>時,函數(shù)f(x)的最小值是a+。
點評:函數(shù)奇偶性的討論問題是中學數(shù)學的基本問題,如果平時注意知識的積累,對解此題會有較大幫助.因為x∈R,f(0)=|a|+1≠0,由此排除f(x)是奇函數(shù)的可能性.運用偶函數(shù)的定義分析可知,當a= 46、0時,f(x)是偶函數(shù),第2題主要考查學生的分類討論思想、對稱思想。
例12.設m是實數(shù),記M={m|m>1},f(x)=log3(x2-4mx+4m2+m+)。
(1)證明:當m∈M時,f(x)對所有實數(shù)都有意義;反之,若f(x)對所有實數(shù)x都有意義,則m∈M;
(2)當m∈M時,求函數(shù)f(x)的最小值;
(3)求證:對每個m∈M,函數(shù)f(x)的最小值都不小于1。
(1)證明:先將f(x)變形:f(x)=log3[(x-2m)2+m+],
當m∈M時,m>1,∴(x-m)2+m+>0恒成立,
故f(x)的定義域為R。
反之,若f(x)對所有實數(shù)x都有意義,則只須x2-4m 47、x+4m2+m+>0。
令Δ<0,即16m2-4(4m2+m+)<0,解得m>1,故m∈M。
(2)解析:設u=x2-4mx+4m2+m+,
∵y=log3u是增函數(shù),
∴當u最小時,f(x)最小。
而u=(x-2m)2+m+,
顯然,當x=m時,u取最小值為m+,
此時f(2m)=log3(m+)為最小值。
(3)證明:當m∈M時,m+=(m-1)+ +1≥3,
當且僅當m=2時等號成立。
∴l(xiāng)og3(m+)≥log33=1。
點評:該題屬于函數(shù)最值的綜合性問題,考生需要結合對數(shù)函數(shù)以及二次函數(shù)的性質來進行處理。
題型七:周期問題
例13.若y=f(2x)的圖像關于 48、直線和對稱,則f(x)的一個周期為( )
A. B. C. D.
解:因為y=f(2x)關于對稱,所以f(a+2x)=f(a-2x)。
所以f(2a-2x)=f[a+(a-2x)]=f[a-(a-2x)]=f(2x)。
同理,f(b+2x) =f(b-2x),
所以f(2b-2x)=f(2x),
所以f(2b-2a+2x)=f[2b-(2a-2x)]=f(2a-2x)=f(2x)。
所以f(2x)的一個周期為2b-2a,
故知f(x)的一個周期為4(b-a)。選項為D。
點評:考察函數(shù)的對稱性以及周期性,類比三角函數(shù) 49、中的周期變換和對稱性的解題規(guī)則處理即可。若函數(shù)y=f(x)的圖像關于直線x=a和x=b對稱(a≠b),則這個函數(shù)是周期函數(shù),其周期為2(b-a)。
例14.已知函數(shù)是定義在上的周期函數(shù),周期,函數(shù)是奇函數(shù)又知在上是一次函數(shù),在上是二次函數(shù),且在時函數(shù)取得最小值。
①證明:;
②求的解析式;
③求在上的解析式。
解:∵是以為周期的周期函數(shù),
∴,
又∵是奇函數(shù),
∴,
∴。
②當時,由題意可設,
由得,
∴,
∴。
③∵是奇函數(shù),
∴,
又知在上是一次函數(shù),
∴可設,而,
∴,∴當時,,
從而當時,,故時,。
∴當時,有,
∴。
當時,,
∴
∴。 50、
點評:該題屬于普通函數(shù)周期性應用的題目,周期性是函數(shù)的圖像特征,要將其轉化成數(shù)字特征。
五.思維總結
1.判斷函數(shù)的奇偶性,必須按照函數(shù)的奇偶性定義進行,為了便于判斷,常應用定義的等價形式:f(-x)= ±f(x)óf(-x) f(x)=0;
2.對函數(shù)奇偶性定義的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)這兩個等式上,要明確對定義域內任意一個x,都有f(-x)=f(x),f(-x)=-f(x)的實質是:函數(shù)的定義域關于原點對稱這是函數(shù)具備奇偶性的必要條件。稍加推廣,可得函數(shù)f(x)的圖象關于直線x=a對稱的充要條件是對定義域內的任意x,都有f(x+a)=f(a- 51、x)成立函數(shù)的奇偶性是其相應圖象的特殊的對稱性的反映;
3.若奇函數(shù)的定義域包含0,則f(0)=0,因此,“f(x)為奇函數(shù)”是"f(0)=0"的非充分非必要條件;
4.奇函數(shù)的圖象關于原點對稱,偶函數(shù)的圖象關于y軸對稱,因此根據(jù)圖象的對稱性可以判斷函數(shù)的奇偶性。
5.若存在常數(shù)T,使得f(x+T)=f(x)對f(x)定義域內任意x恒成立,則稱T為函數(shù)f(x)的周期,一般所說的周期是指函數(shù)的最小正周期周期函數(shù)的定義域一定是無限集。
6.單調性是函數(shù)學習中非常重要的內容,應用十分廣泛,由于新教材增加了“導數(shù)”的內容,所以解決單調性問題的能力得到了很大的提高,因此解決具體函數(shù)的單調性問題,一般求導解決,而解決與抽象函數(shù)有關的單調性問題一般需要用單調性定義解決。注意,關于復合函數(shù)的單調性的知識一般用于簡單問題的分析,嚴格的解答還是應該運用定義或求導解決。
第 26 頁 共 26 頁
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。