本田節(jié)能車傳動(dòng)系統(tǒng)設(shè)計(jì)【三維SW】【含11張cad圖紙+文檔全套資料】
喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請(qǐng)放心下載,,有疑問(wèn)咨詢QQ:414951605或者1304139763 ======================== 喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請(qǐng)放心下載,,有疑問(wèn)咨詢QQ:414951605或者1304139763 ========================
本科生畢業(yè)設(shè)計(jì) (論文)
外 文 翻 譯
原 文 標(biāo) 題
Energy - saving car development: past, present and
? future
譯 文 標(biāo) 題
節(jié)能小車發(fā)展:過(guò)去、現(xiàn)在與未來(lái)
作者所在系別
機(jī)械工程系
作者所在專業(yè)
車輛工程
作者所在班級(jí)
B13142
作 者 姓 名
張林
作 者 學(xué) 號(hào)
201322323
指導(dǎo)教師姓名
何濤
指導(dǎo)教師職稱
副教授
完 成 時(shí) 間
2017
年
3
月
北華航天工業(yè)學(xué)院教務(wù)處制
— 42 —
譯文標(biāo)題
節(jié)能小車發(fā)展:過(guò)去、現(xiàn)在與未來(lái)
原文標(biāo)題
Energy - saving car development: past, present and future
作 者
Lixin Situ
譯 名
國(guó) 籍
中國(guó)香港
原文出處
http://ieeexplore.ieee.org/document/5228601/?reload=true&part=1
譯文:
摘要
當(dāng)比傳統(tǒng)的石油燃燒發(fā)動(dòng)機(jī)更環(huán)保時(shí),這種車輛被認(rèn)為是綠色環(huán)保的,其中包括混合動(dòng)力汽車,插電式,燃料電池,生物燃料等可以改善燃油經(jīng)濟(jì)性的任何非傳統(tǒng)汽車。節(jié)能汽車的發(fā)展已有一百多年,但由于各種原因的解釋,未能在各階段得到公眾的認(rèn)可。雖然電動(dòng)汽車從未大量生產(chǎn),但混合動(dòng)力汽車近年來(lái)取得了勢(shì)頭。福特已經(jīng)推出了第二代HEV,通用還宣布在2010年首次亮相Volt。與常規(guī)HEV相比,插電是混合動(dòng)力汽車開發(fā)的新趨勢(shì),因?yàn)橹灰旭偩嚯x小于充電閾值,那么電動(dòng)模式下行駛距離可以延長(zhǎng)并達(dá)到零排放的可能性。 然而,最近汽車行業(yè)的電氣化趨勢(shì)已經(jīng)發(fā)展一段時(shí)間了并將使汽車行業(yè)發(fā)生徹底的革命。 隨著電動(dòng)汽車技術(shù)的正確政策和政策的推進(jìn),節(jié)能汽車的發(fā)展前景將是未來(lái)發(fā)展的重點(diǎn)。
關(guān)鍵字:節(jié)能汽車 混合動(dòng)力 插入 綠色 歷史
1 引言
與能源獨(dú)立和環(huán)境問(wèn)題相關(guān)的替代燃料車輛,特別是電動(dòng)和混合動(dòng)力電動(dòng)汽車已成為全球政府政策的一部分。美國(guó)要求制定更嚴(yán)格的燃油經(jīng)濟(jì)標(biāo)準(zhǔn)。中國(guó)今年發(fā)布新能源汽車政策,加快推行電力配置,2011年達(dá)到500k的目標(biāo)。香港在不久的將來(lái)也建立了電動(dòng)汽車應(yīng)用的明確愿景。
至于汽車行業(yè),汽油價(jià)格大幅上漲至超過(guò)2美元水平和市場(chǎng)對(duì)此類汽車的需求后,無(wú)聲的綠色解決方案將經(jīng)歷重大轉(zhuǎn)型。該行業(yè)推出更多的燃油高效HEV和較少污染的車輛進(jìn)入市場(chǎng)。隨著過(guò)去幾年油價(jià)急劇上漲,這一現(xiàn)象推動(dòng)了純電動(dòng)汽車的發(fā)展,重新吸引了汽車制造商和政府。
消費(fèi)市場(chǎng)在替代燃料車輛以及HEV和電動(dòng)車輛方面帶來(lái)了顯著的增長(zhǎng)。 Polk&Company進(jìn)行的HEV研究表明,美國(guó)和西歐的HEV銷售市場(chǎng)份額呈上升趨勢(shì)。事實(shí)上,OEM廠商的HEV模型選擇從2000年的兩倍(Insight&Prius)增長(zhǎng)到今天的二十多歲。 2007年,HEV的銷售量已經(jīng)超過(guò)了30萬(wàn)輛HEV。來(lái)自O(shè)EM的HEV和電動(dòng)車輛的進(jìn)一步已知承諾將進(jìn)一步改善HEV生產(chǎn)。增加插電式和電動(dòng)汽車,將加強(qiáng)和加快目前的電氣化趨勢(shì)。
第一款插電式混合動(dòng)力車雪佛蘭Volt,以及北美最終消費(fèi)者的一批計(jì)劃中的電動(dòng)汽車,將為市場(chǎng)帶來(lái)一輪新能源汽車。
一、電動(dòng)車發(fā)展歷史
電動(dòng)汽車的發(fā)展歷史悠久。自從發(fā)明電動(dòng)機(jī)以來(lái),電動(dòng)汽車已經(jīng)有150多年了。從簡(jiǎn)單的不可充電到現(xiàn)代技術(shù)控制系統(tǒng),電動(dòng)汽車的發(fā)展可分為三個(gè)階段:
A.早期發(fā)展階段
電動(dòng)汽車被認(rèn)為是最早的汽車之一,遠(yuǎn)優(yōu)于內(nèi)燃機(jī)。在20世紀(jì)20年代后期至20世紀(jì)30年代,汽油車輛的登記比例為3:1,汽油車輛占有率高達(dá)20%。這是一種主要的運(yùn)輸工具,在馬車上得到了廣泛應(yīng)用,在當(dāng)?shù)剡\(yùn)輸中得到了廣泛的應(yīng)用。
直到1930年,電動(dòng)汽車領(lǐng)導(dǎo)層被汽油車開發(fā)所取代,無(wú)法重新獲得以下原因:汽油成熟度可以合理成本大批量生產(chǎn)。隨著模具制造過(guò)程革命的大規(guī)模生產(chǎn),車輛突然向公眾開放,并作為改善生活的途徑。汽油車在性能和成本方面都領(lǐng)先于超級(jí)電動(dòng)汽車。城市間旅行的基礎(chǔ)設(shè)施改善和需求需要較長(zhǎng)的旅行距離,以前無(wú)法利用電動(dòng)車輛。缺乏充電基礎(chǔ)設(shè)施開發(fā),可靠的電力傳輸和有限的旅行距離,電動(dòng)汽車不再適應(yīng)消費(fèi)者需求,并失去了普通汽油車的優(yōu)勢(shì)。有限的或沒有電氣基礎(chǔ)設(shè)施支持迫使早期電動(dòng)汽車的辭呈和豐富。
汽油廣泛發(fā)現(xiàn),廉價(jià)燃料的準(zhǔn)備就緒也促成了汽油車輛的普及。汽油在20世紀(jì)30年代為車輛運(yùn)輸提供了直接的便宜的能源。它可以通過(guò)容器攜帶,從而使擁有車輛的流動(dòng)性得以擴(kuò)大。
B.中期發(fā)展(20世紀(jì)30年代至80年代)
電動(dòng)汽車的生產(chǎn)和發(fā)展在1935年內(nèi)燃機(jī)接管后的個(gè)人運(yùn)輸中停止。與歐佩克的政治敏感性在20世紀(jì)60年代和70年代創(chuàng)造了能源獨(dú)立的必要性。美國(guó)政府和環(huán)境保護(hù)主義者重新制定了更嚴(yán)格的燃油效率標(biāo)準(zhǔn),并引發(fā)了該期間董事會(huì)對(duì)電動(dòng)汽車的興趣。 70年代初的能源危機(jī)驅(qū)使美國(guó)郵政服務(wù)放置了大量的350 EV測(cè)試車隊(duì)。它是中期發(fā)展的最高節(jié)點(diǎn)。然而,部分原因是由于業(yè)績(jī)有限,其他政府優(yōu)先事項(xiàng),董事會(huì)基礎(chǔ)設(shè)施配置的缺乏和公司參與的范圍,這一時(shí)期的發(fā)展很慢。
C.現(xiàn)代發(fā)展
現(xiàn)代EV發(fā)展由通用汽車公司生產(chǎn)的EV1車隊(duì)主導(dǎo)。在能源部資助的計(jì)劃之后,福特開發(fā)了EV Ranger接收卡車,豐田提供Rav4 EV,而本田在20世紀(jì)90年代末和21世紀(jì)初期也有EV可用。不幸的是,由于政治,經(jīng)濟(jì),教育和技術(shù)這個(gè)復(fù)雜的問(wèn)題,包括車輛生產(chǎn)成本和安全問(wèn)題,電動(dòng)車可用性的短暫增長(zhǎng)并沒有實(shí)現(xiàn)到商業(yè)生產(chǎn)中。 EV1,Ranger,Rav4和本田EV僅用于艦隊(duì)測(cè)試,幾乎所有車輛已經(jīng)停產(chǎn),銷毀和回收利用。只有少數(shù)電動(dòng)車在電動(dòng)汽車愛好者手中幸存下來(lái)。
D.現(xiàn)代HEV發(fā)展
然而,在1999年至21世紀(jì)初期,純電動(dòng)汽車出現(xiàn)了一種新型的電動(dòng)汽車。本田向美國(guó)市場(chǎng)推出首款HEV,本田Insight,為汽車行業(yè)帶來(lái)了另一個(gè)里程碑。隨著市場(chǎng)的接受和普銳斯的成功,HEV技術(shù)顯示出成熟和潛力。福特在“曼哈頓坦克”活動(dòng)期間推出了第一款美國(guó)混合動(dòng)力電動(dòng)汽車Escape SUV HEV,并在充氣城市交通中注冊(cè)了600英里/坦克,開啟了HEV中美國(guó)新時(shí)代的競(jìng)爭(zhēng)。截至2008年,HEV銷售總額達(dá)到2.5%以上。深刻的是,豐田,本田和福特的下一代HEV已經(jīng)在2009年引入了更新技術(shù)的進(jìn)一步細(xì)化。燃油效率也有所提高。
豐田是HEV競(jìng)技場(chǎng)的明顯領(lǐng)導(dǎo)者,以其“協(xié)同驅(qū)動(dòng)系統(tǒng)”的體積和范圍。本田和福特公司正在配備完整的混合動(dòng)力車。通用在混合客車和卡車方面也提供了“雙模”技術(shù)。
E.未來(lái)發(fā)展
隨著汽油價(jià)格快速上漲,再加上環(huán)保問(wèn)題,社會(huì)責(zé)任重新得到社會(huì)責(zé)任。電動(dòng)車等AFV突然變得流行起來(lái)。
隨著幾年前Chevy Volt插件概念的推出以及日產(chǎn)的純電動(dòng)汽車,新一輪的電動(dòng)汽車發(fā)展已經(jīng)在未來(lái)幾年復(fù)活到OEM的周轉(zhuǎn)計(jì)劃中。這一EV趨勢(shì)的結(jié)果將在未來(lái)三年內(nèi)出現(xiàn)。
與以往的電動(dòng)汽車發(fā)展相比,有以下幾個(gè)因素可以確保未來(lái)的發(fā)展取得成功:
汽車經(jīng)營(yíng)者是開發(fā)電動(dòng)汽車的直接目標(biāo)客戶。市場(chǎng)驅(qū)動(dòng)的方法始終以合理的成本和性能創(chuàng)造出具有競(jìng)爭(zhēng)力和吸引力的產(chǎn)品。
早期的技術(shù)和環(huán)境采用者將是最初的領(lǐng)導(dǎo)者和用戶。他們?cè)敢庵С植⒂心芰τ绊懗晒?。各種教育計(jì)劃和電動(dòng)汽車計(jì)劃也改變了對(duì)燃油效率車輛的普遍了解以及他們的好處。電動(dòng)汽車的熱烈接受在未來(lái)幾年是高的。
電站和基礎(chǔ)設(shè)施發(fā)展合作受到不同層次的關(guān)注。正在探索各種商業(yè)模式。行業(yè)和政府相信,最終計(jì)劃將在電動(dòng)汽車大規(guī)模發(fā)布之前達(dá)到。
儲(chǔ)能技術(shù)的改進(jìn)使得鋰電池的使用在車輛上變得安全。系統(tǒng)管理的復(fù)雜化升級(jí),并將電動(dòng)汽車提升到可比較的內(nèi)燃機(jī)水平。最后,適當(dāng)?shù)恼呤切袠I(yè)發(fā)展的基礎(chǔ)。特別稅收優(yōu)惠和補(bǔ)貼將抵消消費(fèi)者購(gòu)買電動(dòng)汽車的負(fù)擔(dān)。在政府愿意提供財(cái)務(wù)和戰(zhàn)略支持的情況下,對(duì)產(chǎn)品的投票是自信的。
三,結(jié)論
像許多新興技術(shù)一樣,電動(dòng)汽車的開發(fā)和應(yīng)用已經(jīng)存在了很長(zhǎng)時(shí)間,但直到最近,技術(shù)還沒有真正起飛。盡管HEV是汽油車的良好替代品,并被媒體廣泛宣傳,但它只是作為中間步驟或近期解決方案的代表。政府法規(guī)和環(huán)境前景,特別是推動(dòng)運(yùn)輸電氣化的采用。電動(dòng)車將是最終目標(biāo)。事實(shí)上,隨著OEM到2012年為終端消費(fèi)者推出更多的電動(dòng)汽車模型,電動(dòng)汽車的展示將被廣泛認(rèn)可和認(rèn)可。隨著新型電動(dòng)汽車的發(fā)展,同時(shí)也將引進(jìn)電力電子技術(shù)相關(guān)技術(shù)的巨大機(jī)遇。利用這個(gè)機(jī)會(huì),為綠色發(fā)展做出貢獻(xiàn)。
原文:
Abstract
A vehicle is consider Green when it more environmentally friendly than the traditional petroleum combustion engine, in which includes any nontraditional vehicle like, HEV, Plug In, EV, Fuel Cell, Bio fuel etc. that improves fuel economy. The development of electric vehicle has been over a hundred years but failure to gain the public acceptance in various stages due to various reasons which explained. While EV was never mass produced, Hybrid electric vehicle gains the momentum in recent years. Ford has launched its second generation of HEV and GM also announced the debut of the Volt in 2010. Comparing to the regular HEV, Plug in is the new trend in hybrid auto development due to extend travel range in electrical mode and a possibility of a zero emission as long as travel distance is less than charging threshold. However, more recently, an electrification trend in automotive industry has been evolved and will revolutionize the industry. With the correct policy and government help and advancement of electric vehicle technology, the prospect of Electric Vehicle will be bright and the focus point of future development.
Key words: electric vehicle, hybrid, plug in, green, history
I. INTRODUCTION
As associated with energy independence and environmental issue, alternative fuel vehicle, especially Electric and Hybrid electric vehicle has become part of the government policy all over the world. The united State mandates a stricter fuel economy standard. China issued a new energy vehicle policy to accelerate & subsidize the deployment of electric this year and set a goal of 500k for 2011. Hong Kong also set a clear vision for EV application in the near future.
As for the auto industry, a silent green resolution is undergo significant transformation after gasoline price rose significantly to exceed US$2 level and market demands for such vehicle. The industry introduced more fuel efficient HEVs and less polluted vehicles to the market. As Oil price surged rapidly during the last few years, the phenomenon has pushed pure electric vehicle development regaining traction among automakers and governments.
The consumer market has brought significant gain in alternative fuel vehicle as well as HEV and electric vehicles. A HEV study (Fig. 1) conducted by Polk & Company indicated an upward trend of market share of HEV sales in United State and Western Europe. An even bigger share of HEV and EV were predicted when they combined. In fact, selection of HEV models from OEMs have grown from two (Insight & Prius) in 2000 to more than twenties as today. Sales of the HEV are in the fast track along with more than 300,000 HEV sold in 2007[2]. Further known commitments of HEV and electric vehicle from OEM will improve the HEV production even more. Adding plug-in and electric vehicle to the line up will strengthen and accelerate the current electrification trend.
Chevy Volt, the first plug-in hybrid, and a bunch of planned electric vehicles saluted for end consumer in the North America will lead to a round of new energy vehicle in the market.
II. HISTORY OF ELECTRIC VEHICLE DEVELOPMENT
The development of electric vehicle has a long history. Since the invention of electric motor, electric vehicle has been around for 150 years. From simple non-chargeable to modern state of art control system, the development of Electric vehicle can be classified into three stages:
A. Early development stage
Electric vehicle was considered among the earliest automobile and well ahead of combustion engine. It dominated the vehicle registration with 3:1 comparing to gasoline vehicles in the late 1920s to 1930s and held most of the land vehicle performance record in early 1900s. It was a major transportation tool and widely used in the society for local transportation improved from horse carriages.
Until 1930, electric vehicle leadership was overtaken by gasoline vehicle development and was never able to reclaim the status for following reasons: Maturity of Gasoline vehicle and can be mass produced at a reasonable cost. With the mass production of Model T & manufacture process revolution, vehicles became suddenly available to general public and proceed as a way to improve life; Gasoline vehicle took over as the leader and surpass electric vehicle both in performance and cost. Infrastructure improvement and demand of inter-city travel required a longer travel distance that was never able to exploit by electric vehicle before. Lacking of charge infrastructure development, reliable electricity transmission and limited travel distance, electric vehicle no longer suited for consumer demand and lost the edge to regular gasoline vehicle. Limited or no electrical infrastructure support forced the resignation and abundance of earlier electric vehicle.
Widely discovery of gasoline in the sate and ready availability of cheap fuel also contributed the spread of gasoline vehicle. Petrol in the 1930s provided a direct cheap source of energy for vehicle transportation. It could be carried around by container which enabled and extended the mobility of owning a vehicle.
B. Midterm development (1930s-1980s)
Electric vehicle production and development came to a halt as personal transportation after combustion engine took over in 1935. Political sensitivity with OPEC created a necessity of energy independence during the 1960s and 1970s. U.S Government and environmentalist reintroduced tougher fuel efficient standard for the industry and ignited a board interest in electric vehicle in the period. Energy crisis in early 70s driven the US postal service placed a large order of 350 EV test fleet. It is the highest node of midterm development. However, partly due to limited performance, other governmental priorities, lack of board infrastructure support and range of corporation participation, the development quiet down quickly during this period.
C. Modern Development
Modern EV development was dominated by EV1 who produced by GM for fleet application. Following a program funded by Department of Energy, Ford developed EV Ranger pick up truck, Toyota provided Rav4 EV and Honda had an EV available as well during late 1990s and early 2000s. Unfortunately, this short surge of EV availability did not realized into commercial production because of a complicated issue of politics, economic, education and technology that includes vehicle production cost and safety concerns. EV1, Ranger, Rav4 and Honda EV were intended for fleet test only, almost all the vehicles has been discontinued, destroyed and recycled. Only a handful of electric vehicles were survived under the hands of EV enthusiasts.
D. Modern HEV development
However, in 1999 and early 2000s, a new type of electric vehicle emerged from pure electric vehicle. Honda introduced the first HEV, Honda Insight, to the US Market that brought another milestone in auto industry. With brisk market acceptance and success of the Prius, HEV technology shows it maturity and potential. Ford introduced the first American hybrid electric vehicle, Escape SUV HEV, during the ‘Manhattan on a Tank’ event and registered 600 miles/tank in congestive city traffic that opened a new era of competition in US among HEVs. By year of 2008, the HEV sales were more than 2.5% for total sales volume. In deep, the next generation of HEV from Toyota, Honda and Ford has introduced into 2009 with further refinement along updated technology. Fuel efficiency has improved as well.
Toyota is the clear leader in the HEV arena base on volume and range of models with it “synergy drive system”. Honda and Ford are right behind with their offering in full hybrids. GM offers its “two mode” technology in hybrid passenger cars and trucks as well.
E. Future Development
As gasoline price rise rapidly, combined with environmental concern, the society renews the call for social responsibility. Electric Vehicle and other AFV suddenly becomes popular again.
With announcement of the Chevy Volt plug-in concept couple years ago and pure electric vehicle from Nissan, a new round of EV development has resurrected into OEM’s cycle plan in the up coming years. The fruit of this EV trend will be seen in the next three years.
Comparing to previous electric vehicle development, there are a few factors that will ensure this initiation be successful in the future:
Vehicle operators are the direct target customers of developing EV. Market driven approach always creates competitive and attractive products at reasonable cost and performance.
Early technology and environmental adopter will the initial leaders and users. They are willing to support and has the capability to influence the success. Also various education programs and EV initiatives transform general understanding of fuel efficient vehicles and their benefits. Warm acceptance of electric vehicle is high in the coming years.
Cooperation in charge station and infrastructure development has gained attention at different level. Various business models are being explored. The industry and government are confident that final plan will reach prior to the mass launch of electric vehicle.
Energy storage technology improvement makes lithium battery application became safe in vehicle. Sophistication of system management upgrades and improves electric vehicle to a comparable level of combustion engine. Lastly, proper government policy provides a development foundation for the industry. Special tax incentives and subsidy will offset consumer burden for purchasing electric vehicle. It is a confident vote for the product when government is willing to provide financial and strategic support.
III. CONCLUSION
Like many emerging technology, electric vehicle development and application have been around for a long time, but until recently, the technology has not really taken off. Even though HEV started as a good alternative to gasoline vehicle and well publicized by the media, but it only represented as the intermediate step or near term solution. Government regulation and environmental prospect, in particular will drive the adoption of transportation electrification. Electric vehicle will be the final goal. In fact, as OEM introduce more EV model to the end consumer by 2012, the presents of electric vehicle will be widely seen and recognized. Along with new electric vehicle development on the way, it will also introduce tremendous opportunity in associated technology especially in Power electronics. We shall utilize this opportunity and contribute to the green trend.
指 導(dǎo) 教 師 評(píng) 語(yǔ)
外文翻譯成績(jī):
指導(dǎo)教師簽字:
年 月 日
注:1. 指導(dǎo)教師對(duì)譯文進(jìn)行評(píng)閱時(shí)應(yīng)注意以下幾個(gè)方面:①翻譯的外文文獻(xiàn)與畢業(yè)設(shè)計(jì)(論文)的主題是否高度相關(guān),并作為外文參考文獻(xiàn)列入畢業(yè)設(shè)計(jì)(論文)的參考文獻(xiàn);②翻譯的外文文獻(xiàn)字?jǐn)?shù)是否達(dá)到規(guī)定數(shù)量(3 000字以上);③譯文語(yǔ)言是否準(zhǔn)確、通順、具有參考價(jià)值。
2. 外文原文應(yīng)以附件的方式置于譯文之后。
共 5 頁(yè) 第 11 頁(yè)
收藏