《開放性問題》word版

上傳人:xt****7 文檔編號:103564728 上傳時間:2022-06-09 格式:DOC 頁數(shù):8 大?。?60.51KB
收藏 版權(quán)申訴 舉報 下載
《開放性問題》word版_第1頁
第1頁 / 共8頁
《開放性問題》word版_第2頁
第2頁 / 共8頁
《開放性問題》word版_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《《開放性問題》word版》由會員分享,可在線閱讀,更多相關(guān)《《開放性問題》word版(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、開放性問題 1. (2014?四川巴中,第28題10分)如圖,在四邊形ABCD中,點H是BC的中點,作射線AH,在線段AH及其延長線上分別取點E,F(xiàn),連結(jié)BE,CF. (1)請你添加一個條件,使得△BEH≌△CFH,你添加的條件是  ,并證明. (2)在問題(1)中,當(dāng)BH與EH滿足什么關(guān)系時,四邊形BFCE是矩形,請說明理由. 2. (2014?山東威海,第24題11分)猜想與證明: 如圖1擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若M為AF的中點,連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論. 拓展與

2、延伸: (1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為 DM=DE . (2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結(jié)論仍然成立. 3. (2014?山東棗莊,第22題8分)如圖,四邊形ABCD的對角線AC、BD交于點O,已知O是AC的中點,AE=CF,DF∥BE. (1)求證:△BOE≌△DOF; (2)若OD=AC,則四邊形ABCD是什么特殊四邊形?請證明你的結(jié)論. 4. (2014?山東煙臺,第25題10分)在正方形ABCD中,動

3、點E,F(xiàn)分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動. (1)如圖①,當(dāng)點E自D向C,點F自C向B移動時,連接AE和DF交于點P,請你寫出AE與DF的位置關(guān)系,并說明理由; (2)如圖②,當(dāng)E,F(xiàn)分別移動到邊DC,CB的延長線上時,連接AE和DF,(1)中的結(jié)論還成立嗎?(請你直接回答“是”或“否”,不需證明) (3)如圖③,當(dāng)E,F(xiàn)分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結(jié)論還成立嗎?請說明理由; (4)如圖④,當(dāng)E,F(xiàn)分別在邊DC,CB上移動時,連接AE和DF交于點P,由于點E,F(xiàn)的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.若AD=

4、2,試求出線段CP的最小值. 5. (2014?浙江杭州,第23題,12分)復(fù)習(xí)課中,教師給出關(guān)于x的函數(shù)y=2kx2﹣(4kx+1)x﹣k+1(k是實數(shù)). 教師:請獨立思考,并把探索發(fā)現(xiàn)的與該函數(shù)有關(guān)的結(jié)論(性質(zhì))寫到黑板上. 學(xué)生思考后,黑板上出現(xiàn)了一些結(jié)論.教師作為活動一員,又補充一些結(jié)論,并從中選出以下四條: ①存在函數(shù),其圖象經(jīng)過(1,0)點; ②函數(shù)圖象與坐標軸總有三個不同的交點; ③當(dāng)x>1時,不是y隨x的增大而增大就是y隨x的增大而減小; ④若函數(shù)有最大值,則最大值比為正數(shù),若函數(shù)有最小值,則最小值比為負數(shù). 教師:請你分別判斷四條結(jié)論

5、的真假,并給出理由.最后簡單寫出解決問題時所用的數(shù)學(xué)方法.   開放性問題 1. (2014?四川巴中,第28題10分)如圖,在四邊形ABCD中,點H是BC的中點,作射線AH,在線段AH及其延長線上分別取點E,F(xiàn),連結(jié)BE,CF. (1)請你添加一個條件,使得△BEH≌△CFH,你添加的條件是  ,并證明. (2)在問題(1)中,當(dāng)BH與EH滿足什么關(guān)系時,四邊形BFCE是矩形,請說明理由. 考點:矩形的判定. 分析:(1)根據(jù)全等三角形的判定方法,可得出當(dāng)EH=FH,BE∥CF,∠EBH=∠FCH時,都可以證明△BEH≌△CFH, (2)由

6、(1)可得出四邊形BFCE是平行四邊形,再根據(jù)對角線相等的平行四邊形為矩形可得出BH=EH時,四邊形BFCE是矩形. 解答:(1)答:添加:EH=FH,證明:∵點H是BC的中點,∴BH=CH, 在△△BEH和△CFH中,,∴△BEH≌△CFH(SAS); (2)解:∵BH=CH,EH=FH, ∴四邊形BFCE是平行四邊形(對角線互相平分的四邊形為平行四邊形), ∵當(dāng)BH=EH時,則BC=EF, ∴平行四邊形BFCE為矩形(對角線相等的平行四邊形為矩形). 點評:本題考查了全等三角形的判定和性質(zhì)以及平行四邊形的判定,是基礎(chǔ)題,難度不大. 2. (2014?山東威海,第24題11分

7、)猜想與證明: 如圖1擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若M為AF的中點,連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論. 拓展與延伸: (1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為 DM=DE . (2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結(jié)論仍然成立. 考點: 四邊形綜合題 分析: 猜想:延長EM交AD于點H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,

8、斜邊的中線等于斜邊的一半證明. (1)延長EM交AD于點H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜邊的中線等于斜邊的一半證明, (2)連接AE,AE和EC在同一條直線上,再利用直角三角形中,斜邊的中線等于斜邊的一半證明, 解答: 猜想:DM=ME 證明:如圖1,延長EM交AD于點H, ∵四邊形ABCD和CEFG是矩形, ∴AD∥EF, ∴∠EFM=∠HAM, 又∵∠FME=∠AMH,F(xiàn)M=AM, 在△FME和△AMH中, ∴△FME≌△AMH(ASA) ∴HM=EM, 在RT△HDE中,HM=EM, ∴DM=HM=ME, ∴DM=M

9、E. (1)如圖1,延長EM交AD于點H, ∵四邊形ABCD和CEFG是矩形, ∴AD∥EF, ∴∠EFM=∠HAM, 又∵∠FME=∠AMH,F(xiàn)M=AM, 在△FME和△AMH中, ∴△FME≌△AMH(ASA) ∴HM=EM, 在RT△HDE中,HM=EM, ∴DM=HM=ME, ∴DM=ME, 故答案為:DM=ME. (2)如圖2,連接AE, ∵四邊形ABCD和ECGF是正方形, ∴∠FCE=45°,∠FCA=45°, ∴AE和EC在同一條直線上, 在RT△ADF中,AM=MF, ∴DM=AM=MF, 在RT△AEF中,AM=MF, ∴AM

10、=MF=ME, ∴DM=ME. 點評: 本題主要考查四邊形的綜合題,解題的關(guān)鍵是利用正方形的性質(zhì)及直角三角形的中線與斜邊的關(guān)系找出相等的線段. 3. (2014?山東棗莊,第22題8分)如圖,四邊形ABCD的對角線AC、BD交于點O,已知O是AC的中點,AE=CF,DF∥BE. (1)求證:△BOE≌△DOF; (2)若OD=AC,則四邊形ABCD是什么特殊四邊形?請證明你的結(jié)論. 考點: 全等三角形的判定與性質(zhì);平行四邊形的判定與性質(zhì);矩形的判定 專題: 計算題. 分析: (1)由DF與BE平行,得到兩對內(nèi)錯角相等,再由O為AC的中點,得到OA=OC,又AE=

11、CF,得到OE=OF,利用AAS即可得證; (2)若OD=AC,則四邊形ABCD為矩形,理由為:由OD=AC,得到OB=AC,即OD=OA=OC=OB,利用對角線互相平分且相等的四邊形為矩形即可得證. 解答: (1)證明:∵DF∥BE, ∴∠FDO=∠EBO,∠DFO=∠BEO, ∵O為AC的中點,即OA=OC,AE=CF, ∴OA﹣AE=OC﹣CF,即OE=OF, 在△BOE和△DOF中, , ∴△BOE≌△DOF(AAS); (2)若OD=AC,則四邊形ABCD是矩形,理由為: 證明:∵△BOE≌△DOF, ∴OB=OD, ∴OA=OB=OC=OD,即BD=A

12、C, ∴四邊形ABCD為矩形. 點評: 此題考查了全等三角形的判定與性質(zhì),矩形的判定與性質(zhì),以及平行線的性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵. 4. (2014?山東煙臺,第25題10分)在正方形ABCD中,動點E,F(xiàn)分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動. (1)如圖①,當(dāng)點E自D向C,點F自C向B移動時,連接AE和DF交于點P,請你寫出AE與DF的位置關(guān)系,并說明理由; (2)如圖②,當(dāng)E,F(xiàn)分別移動到邊DC,CB的延長線上時,連接AE和DF,(1)中的結(jié)論還成立嗎?(請你直接回答“是”或“否”,不需證明) (3)如圖③,當(dāng)E,F(xiàn)分別在邊C

13、D,BC的延長線上移動時,連接AE,DF,(1)中的結(jié)論還成立嗎?請說明理由; (4)如圖④,當(dāng)E,F(xiàn)分別在邊DC,CB上移動時,連接AE和DF交于點P,由于點E,F(xiàn)的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.若AD=2,試求出線段CP的最小值. 考點:全等三角形,正方形的性質(zhì),勾股定理,運動與變化的思想. 分析:(1)AE=DF,AE⊥DF.先證得△ADE≌△DCF.由全等三角形的性質(zhì)得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF; (2)是.四邊形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于

14、是AE=DF,∠DAE=∠CDF,因為∠CDF+∠ADF=90°,∠DAE+ ∠ADF=90°,所以AE⊥DF; (3)成立.由(1)同理可證AE=DF,∠DAE=∠CDF,延長FD交AE于點G,再由等角的余角相等可得AE⊥DF; (4)由于點P在運動中保持∠APD=90°,所以點P的路徑是一段以AD為直徑的弧,設(shè)AD的中點為O,連接OC交弧于點P,此時CP的長度最小,再由勾股定理可得 OC的長,再求CP即可. 解答:(1)AE=DF,AE⊥DF.理由:∵四邊形ABCD是正方形, ∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF. ∴AE=DF,∠DAE=

15、∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF; (2)是; (3)成立. 理由:由(1)同理可證AE=DF,∠DAE=∠CDF 延長FD交AE于點G, 則∠CDF+∠ADG=90°, ∴∠ADG+∠DAE=90°. ∴AE⊥DF; (4)如圖: 由于點P在運動中保持∠APD=90°, ∴點P的路徑是一段以AD為直徑的弧, 設(shè)AD的中點為O,連接OC交弧于點P,此時CP的長度最小, 在Rt△ODC中,OC=, ∴CP=OC﹣OP=. 點評: 本題主要考查了四邊形的綜合知識.綜合性較強,特別是第(4)題要認真分析. 5. (20

16、14?浙江杭州,第23題,12分)復(fù)習(xí)課中,教師給出關(guān)于x的函數(shù)y=2kx2﹣(4kx+1)x﹣k+1(k是實數(shù)). 教師:請獨立思考,并把探索發(fā)現(xiàn)的與該函數(shù)有關(guān)的結(jié)論(性質(zhì))寫到黑板上. 學(xué)生思考后,黑板上出現(xiàn)了一些結(jié)論.教師作為活動一員,又補充一些結(jié)論,并從中選出以下四條: ①存在函數(shù),其圖象經(jīng)過(1,0)點; ②函數(shù)圖象與坐標軸總有三個不同的交點; ③當(dāng)x>1時,不是y隨x的增大而增大就是y隨x的增大而減??; ④若函數(shù)有最大值,則最大值比為正數(shù),若函數(shù)有最小值,則最小值比為負數(shù). 教師:請你分別判斷四條結(jié)論的真假,并給出理由.最后簡單寫出解決問題時所用的數(shù)學(xué)方法. 考

17、點: 二次函數(shù)綜合題 分析: ①將(1,0)點代入函數(shù),解出k的值即可作出判斷; ②首先考慮,函數(shù)為一次函數(shù)的情況,從而可判斷為假; ③根據(jù)二次函數(shù)的增減性,即可作出判斷; ④當(dāng)k=0時,函數(shù)為一次函數(shù),無最大之和最小值,當(dāng)k≠0時,函數(shù)為拋物線,求出頂點的縱坐標表達式,即可作出判斷. 解答: 解:①真,將(1,0)代入可得:2k﹣(4k+1)﹣k+1=0, 解得:k=0. 運用方程思想; ②假,反例:k=0時,只有兩個交點.運用舉反例的方法; ③假,如k=1,﹣=,當(dāng)x>1時,先減后增;運用舉反例的方法; ④真,當(dāng)k=0時,函數(shù)無最大、最小值; k≠0時,y最==﹣, ∴當(dāng)k>0時,有最小值,最小值為負; 當(dāng)k<0時,有最大值,最大值為正.運用分類討論思想. 點評: 本題考查了二次函數(shù)的綜合,立意新穎,結(jié)合考察了數(shù)學(xué)解題過程中經(jīng)常用到的幾種解題方法,同學(xué)們注意思考、理解,難度一般.  

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!