《2017-2018版高中數(shù)學 第一章 統(tǒng)計 8 最小二乘估計學案 北師大版必修3》由會員分享,可在線閱讀,更多相關(guān)《2017-2018版高中數(shù)學 第一章 統(tǒng)計 8 最小二乘估計學案 北師大版必修3(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
8 最小二乘估計
學習目標 1.了解用最小二乘法建立線性回歸方程的思想,會用給出的公式建立線性回歸方程.2.理解回歸直線與觀測數(shù)據(jù)的關(guān)系,能用線性回歸方程進行估計和預測.
知識點一 最小二乘法
思考 具有線性相關(guān)關(guān)系的散點大致分布在一條直線附近.如何確定這條直線比較合理?
知識點二 線性回歸方程
思考 數(shù)學上的“回歸”是什么意思?
梳理 用最小二乘法得到的直線方程稱為__________,a,b是線性回歸方程的系數(shù).
如果用表示,用表示,則可以求得
b=
=.
a=________.
類型一 線性
2、回歸方程的求法
例1 下表為某地近幾年機動車輛數(shù)與交通事故數(shù)的統(tǒng)計資料.
機動車輛數(shù)x/千臺
95
110
112
120
129
135
150
180
交通事故數(shù)y/千件
6.2
7.5
7.7
8.5
8.7
9.8
10.2
13
(1)請判斷機動車輛數(shù)與交通事故數(shù)之間是否具有線性相關(guān)關(guān)系,如果不具有線性相關(guān)關(guān)系,請說明理由;
(2)如果具有線性相關(guān)關(guān)系,求出線性回歸方程.
反思與感悟 即使散點圖呈餅狀,也可利用公式求出線性回歸方程,但這種方程顯然沒什么價值.故應先畫出散點圖,看是否呈直線
3、形,再求方程.
跟蹤訓練1 以下是某地搜集到的新房屋的銷售價格y和房屋的面積x的數(shù)據(jù):
房屋面積x(m2)
115
110
80
135
105
銷售價格y(萬元)
24.8
21.6
18.4
29.2
22
(1)畫出數(shù)據(jù)對應的散點圖;
(2)求線性回歸方程,并在散點圖中加上回歸直線.
類型二 線性回歸方程的應用
例2 有一個同學家開了一個小賣部,他為了研究氣溫對熱飲銷售的影響,經(jīng)過統(tǒng)計,得到一個賣出的熱飲杯數(shù)與當天氣溫的對比表:
攝氏溫度/℃
-5
0
4
7
12
15
19
23
27
31
4、
36
熱飲杯數(shù)
156
150
132
128
130
116
104
89
93
76
54
(1)畫出散點圖;
(2)從散點圖中發(fā)現(xiàn)氣溫與熱飲銷售杯數(shù)之間有什么關(guān)系;
(3)求線性回歸方程;
(4)如果某天的氣溫是2℃,預測這天賣出的熱飲杯數(shù);
(5) 氣溫為2℃時,小賣部一定能夠賣出143杯左右熱飲嗎?為什么?
反思與感悟 線性回歸方程主要用于預測,但這種預測類似于天氣預報,不一定與實際數(shù)據(jù)完全吻合.
跟蹤訓練2 有人統(tǒng)計了同一個省的6個城市某一年的人均國民生產(chǎn)總值(即人均GDP)和這一年各城市患白血病的兒
5、童數(shù),如下表:
人均GDP/萬元
10
8
6
4
3
1
患白血病的兒童數(shù)/人
351
312
207
175
132
180
(1)畫出散點圖,并判定這兩個變量是否具有線性相關(guān)關(guān)系;
(2)通過計算可知這兩個變量的線性回歸方程為y=23.25x+102.15,假如一個城市的人均GDP為12萬元,那么可以斷言,這個城市患白血病的兒童一定超過380人,請問這個斷言是否正確?
1.下列有關(guān)線性回歸的說法,不正確的是( )
A.自變量取值一定時,因變量的取值帶有一定隨機性的兩個變量之間的關(guān)系叫做相關(guān)關(guān)系
B.在平面直
6、角坐標系中用描點的方法得到表示具有相關(guān)關(guān)系的兩個變量的一組數(shù)據(jù)的圖形叫作散點圖
C.線性回歸方程最能代表觀測值x、y之間的線性關(guān)系
D.任何一組觀測值都能得到具有代表意義的線性回歸方程
2.已知回歸直線的斜率的估計值是1.23,樣本點中心(即(,))為(4,5),( )
A.y=1.23x+4
B.y=1.23x+5
C.y=1.23x+0.08
D.y=0.08x+1.23
3.某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表:
廣告費用x(萬元)
4
2
3
5
銷售額y(萬元)
49
26
39
54
根據(jù)上表可得線性回歸方程y=bx+a中的b為9
7、.4,據(jù)此模型預報廣告費用為6萬元時銷售額為( )
A.63.6萬元
B.65.5萬元
C.67.7萬元
D.72.0萬元
4.設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的線性回歸方程為y=0.85x-85.71,則下列結(jié)論中不正確的是( )
A.y與x具有正的線性相關(guān)關(guān)系
B.回歸直線過樣本點的中心(,)
C.若該大學某女生身高增加1 cm,則其體重約增加0.85 kg
D.若該大學某女生身高為170 cm,則可判定其體重必為58.79 kg
1.求線性回歸方程時
8、應注意的問題
(1)知道x與y成線性相關(guān)關(guān)系,無需進行相關(guān)性檢驗,否則應首先進行相關(guān)性檢驗,如果兩個變量之間本身不具有相關(guān)關(guān)系,或者說,它們之間的相關(guān)關(guān)系不顯著,即使求出線性回歸方程也是毫無意義的,而且用其估計和預測的量也是不可信的.
(2)用公式計算a、b的值時,要先計算b,然后才能算出a.
2.利用線性回歸方程,我們可以進行估計和預測.若線性回歸方程為y=bx+a,則x=x0處的估計值為y0=bx0+a.
答案精析
問題導學
知識點一
思考 應該使散點整體上最接近這條直線.最小二乘法是一種求回歸直線的方法,用這種方法求得的回歸直線能使樣本數(shù)據(jù)的點到回歸直線的距離
9、
[y1-(a+bx1)]2+[y2-(a+bx2)]2+…+[yn-(a+bxn)]2最?。?
知識點二
思考 “回歸”一詞最早由英國統(tǒng)計學家(Francils Galton)提出的,本意是子女的身高會向一般人的均值靠攏.現(xiàn)在這個概念引伸到隨機變量有向回歸線集中的趨勢.
梳理
線性回歸方程 -b
題型探究
例1 解 (1)在平面直角坐標系中畫出數(shù)據(jù)的散點圖,如圖.
直觀判斷散點在一條直線附近,故具有線性相關(guān)關(guān)系.
(2)計算相應的數(shù)據(jù)之和:
i=1 031,i=71.6,
=137 835,iyi=9 611.7,
=128.875,=8.95,
將它們代入公式計
10、算得b≈0.077 4,a≈-1.024 9,
所以,所求線性回歸方程為y=0.077 4x-1.024 9.
跟蹤訓練1 解 (1)數(shù)據(jù)對應的散點圖如圖所示:
(2)=i=109,=23.2,
=60 975,iyi=12 952.
設所求線性回歸方程為y=bx+a,
則b=≈0.196 2,
a=-b=23.2-109×0.196 2=1.814 2,
故所求線性回歸方程為y=0.196 2x+1.814 2.
回歸直線如(1)中圖所示.
例2 解 (1)散點圖如圖所示:
(2)從上圖看到,各點散布在從左上角到右下角的區(qū)域里,因此,氣溫與熱飲銷售杯數(shù)之間呈負相
11、關(guān),即氣溫越高,賣出去的熱飲杯數(shù)越少.
(3)從散點圖可以看出,這些點大致分布在一條直線的附近,因此,可用公式求出線性回歸方程的系數(shù).利用計算器容易求得線性回歸方程為y=-2.352x+147.767.
(4)當x=2時,y=143.063.因此,某天的氣溫為2℃時,這天大約可以賣出143杯熱飲.
(5)小賣部不一定能夠賣出143杯左右熱飲,原因如下:①線性回歸方程中的截距和斜率都是通過樣本估計出來的,存在誤差,這種誤差可以導致預測結(jié)果的偏差.②即使截距和斜率的估計沒有誤差,也不可能百分之百地保證對應于x的預報值,能夠與實際值y很接近.我們不能保證點(x,y)落在回歸直線上,甚至不能百分之百地保證它落在回歸直線的附近.
跟蹤訓練2 解 (1)散點圖如下:
根據(jù)散點圖可以看出,在6個點中,雖然第一個點離這條直線較遠,但其余5個點大致分布在這條直線的附近,所以這兩個變量具有線性相關(guān)關(guān)系.
(2)斷言是錯誤的,將x=12代入y=23.25x+102.15得y=23.25×12+102.15=381.15>380,但381.15是對該城市人均GDP為12萬元的情況下所作的一個估計,該城市患白血病的兒童可能超過380人,也可能低于380人.
當堂訓練
1.D 2.C 3.B 4.D
8