《2019-2020學(xué)年新教材高中數(shù)學(xué) 第三章 函數(shù) 3.1 函數(shù)的概念與性質(zhì) 3.1.3 函數(shù)的奇偶性 第1課時(shí) 函數(shù)的奇偶性學(xué)案 新人教B版必修第一冊》由會員分享,可在線閱讀,更多相關(guān)《2019-2020學(xué)年新教材高中數(shù)學(xué) 第三章 函數(shù) 3.1 函數(shù)的概念與性質(zhì) 3.1.3 函數(shù)的奇偶性 第1課時(shí) 函數(shù)的奇偶性學(xué)案 新人教B版必修第一冊(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、第1課時(shí) 函數(shù)的奇偶性
(教師獨(dú)具內(nèi)容)
課程標(biāo)準(zhǔn):1.結(jié)合具體函數(shù),了解函數(shù)奇偶性的概念和奇偶函數(shù)圖像的特征.2.會根據(jù)函數(shù)奇偶性的概念判斷和證明函數(shù)的奇偶性.
教學(xué)重點(diǎn):函數(shù)奇偶性的概念,判斷函數(shù)奇偶性的方法.
教學(xué)難點(diǎn):函數(shù)奇偶性的判斷.
【情境導(dǎo)學(xué)】(教師獨(dú)具內(nèi)容)
畢達(dá)哥拉斯曾說:“一切平面圖形中,最美的是圓形.”那是因?yàn)閳A在各個(gè)方向上都是對稱的,是一種極致的美.可以這樣說,大自然便是用對稱來組織與生成的.如我們?nèi)梭w則更是這種高度對稱的代表.請大家再舉幾個(gè)對稱的例子(更好地激發(fā)學(xué)習(xí)熱情).由于函數(shù)是用來揭示自然界的奧秘的,因此有些函數(shù)便天然地具有這種對稱性.我們還知道
2、,對稱有軸對稱和中心對稱兩種,如果這 個(gè)對稱軸變成了坐標(biāo)系中的y軸,對稱中心變成了原點(diǎn),那么此時(shí)的函數(shù)具有哪些性質(zhì)呢?這些性質(zhì)是否一樣能給我們帶來美的享受呢?
【知識導(dǎo)學(xué)】
知識點(diǎn)一 函數(shù)奇偶性的概念
(1)偶函數(shù):一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)镈,如果對D內(nèi)的任意一個(gè)x,都有-x∈D,且f(-x)=f(x),則稱y=f(x)為偶函數(shù).
(2)奇函數(shù):一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)镈,如果對D內(nèi)的任意一個(gè)x,都有-x∈D,且f(-x)=-f(x),則稱y=f(x)為奇函數(shù).
知識點(diǎn)二 奇偶函數(shù)的圖像特征
(1)偶函數(shù)的圖像關(guān)于y軸對稱;反之,圖像關(guān)于y軸對稱的函數(shù)一定
3、是偶函數(shù).
(2)奇函數(shù)的圖像關(guān)于原點(diǎn)對稱;反之,圖像關(guān)于原點(diǎn)對稱的函數(shù)一定是奇函數(shù).
【新知拓展】
理解函數(shù)的奇偶性要注意的四點(diǎn)
(1)函數(shù)的單調(diào)性是函數(shù)的“局部”性質(zhì),而奇偶性是函數(shù)的“整體”性質(zhì),只有對其定義域內(nèi)的每一個(gè)x,都有f(-x)=-f(x)(或f(-x)=f(x)),才能說f(x)是奇(或偶)函數(shù).
(2)函數(shù)y=f(x)是奇函數(shù)或偶函數(shù)的一個(gè)必不可少的條件:定義域關(guān)于原點(diǎn)對稱,換言之,若所給函數(shù)的定義域不關(guān)于原點(diǎn)對稱,則這個(gè)函數(shù)一定不具有奇偶性.例如,函數(shù)y=x2在區(qū)間(-∞,+∞)上是偶函數(shù),但在區(qū)間[-1,2]上卻無奇偶性可言.
(3)若奇函數(shù)在原點(diǎn)處有定義
4、,則必有f(0)=0.
(4)若f(-x)=-f(x),且f(-x)=f(x),則f(x)既是奇函數(shù)又是偶函數(shù),既奇又偶的函數(shù)有且只有一類,即f(x)=0,x∈D,D是關(guān)于原點(diǎn)對稱的非空實(shí)數(shù)集.
1.判一判(正確的打“√”,錯誤的打“×”)
(1)奇、偶函數(shù)的定義域都關(guān)于原點(diǎn)對稱.( )
(2)函數(shù)f(x)=x2的圖像關(guān)于原點(diǎn)對稱.( )
(3)對于定義在R上的函數(shù)f(x),若f(-1)=-f(1),則函數(shù)f(x)一定是奇函數(shù).( )
(4)函數(shù)f(x)=x3,x∈[-1,1)是奇函數(shù).( )
答案 (1)√ (2)× (3)× (4)×
2.做一做(請把正確的答案
5、寫在橫線上)
(1)若函數(shù)f(x)是定義在R上的奇函數(shù),則f(0)=______.
(2)函數(shù)f(x)=x在定義域R上是________函數(shù)(填“奇”或“偶”).
(3)已知函數(shù)f(x)是定義域?yàn)镽的偶函數(shù),若f(2)=4,則f(-2)=________.
答案 (1)0 (2)奇 (3)4
題型一 函數(shù)奇偶性的判斷
例1 判斷下列函數(shù)的奇偶性:
(1)f(x)=x4+2x2;
(2)f(x)=x3+;
(3)f(x)=+;
(4)f(x)=2-|x|;
(5)f(x)=;
(6)f(x)=x3+x2.
[解] (1)因?yàn)閒(x)的定義域?yàn)镽,關(guān)于原點(diǎn)對稱,
6、且f(-x)=(-x)4+2(-x)2=x4+2x2=f(x),所以f(x)為偶函數(shù).
(2)因?yàn)閒(x)的定義域?yàn)?-∞,0)∪(0,+∞),關(guān)于原點(diǎn)對稱,且f(-x)=(-x)3+=-=-f(x),所以f(x)為奇函數(shù).
(3)因?yàn)閒(x)的定義域?yàn)閧-1,1},是兩個(gè)具體數(shù),但它關(guān)于原點(diǎn)對稱,又f(-1)=f(1)=0,f(-1)=-f(1)=0,所以f(x)=+既是奇函數(shù),又是偶函數(shù).
(4)因?yàn)閒(x)的定義域是R,關(guān)于原點(diǎn)對稱,且f(-x)=2-|-x|=2-|x|=f(x),所以f(x)是偶函數(shù).
(5)因?yàn)閒(x)=的定義域是{x|x≥0},它不關(guān)于原點(diǎn)對稱,所以f(x
7、)是非奇非偶函數(shù).
(6)因?yàn)閒(x)=x3+x2的定義域是R,關(guān)于原點(diǎn)對稱,f(-x)=-x3+x2,
所以f(-x)≠-f(x),f(-x)≠f(x),
所以f(x)是非奇非偶函數(shù).
金版點(diǎn)睛
判斷函數(shù)奇偶性的方法
(1)定義法
根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷.步驟如下:
①判斷函數(shù)f(x)的定義域是否關(guān)于原點(diǎn)對稱.若不對稱,則函數(shù)f(x)為非奇非偶函數(shù),若對稱,則進(jìn)行下一步.
②驗(yàn)證.f(-x)=-f(x)或f(-x)=f(x).
③下結(jié)論.若f(-x)=-f(x),則f(x)為奇函數(shù);若f(-x)=f(x),則f(x)為偶函數(shù);
若f(-x)≠-f(x),且f(-x
8、)≠f(x),則f(x)為非奇非偶函數(shù).
(2)圖像法
①若f(x)圖像關(guān)于原點(diǎn)對稱,則f(x)是奇函數(shù).
②若f(x)圖像關(guān)于y軸對稱,則f(x)是偶函數(shù).
③若f(x)圖像既關(guān)于原點(diǎn)對稱,又關(guān)于y軸對稱,則f(x)既是奇函數(shù),又是偶函數(shù).
④若f(x)的圖像既不關(guān)于原點(diǎn)對稱,又不關(guān)于y軸對稱,則f(x)既不是奇函數(shù)也不是偶函數(shù).
(3)性質(zhì)法
①偶函數(shù)的和、差、積、商(分母不為零)仍為偶函數(shù);
②奇函數(shù)的和、差仍為奇函數(shù);
③奇(偶)數(shù)個(gè)奇函數(shù)的積、商(分母不為零)為奇(偶)函數(shù);
④一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的積為奇函數(shù).
判斷下列函數(shù)的奇偶性:
(1)f(
9、x)=x3+3x,x∈[-4,4);
(2)f(x)=;
(3)f(x)=|x-2|-|x+2|;
(4)f(x)=·.
解 (1)因?yàn)楹瘮?shù)的定義域關(guān)于坐標(biāo)原點(diǎn)不對稱,即存在-4∈[-4,4),而4?[-4,4),所以,函數(shù)f(x)=x3+3x,x∈[-4,4)既不是奇函數(shù)也不是偶函數(shù).
(2)因?yàn)楹瘮?shù)的定義域?yàn)?-∞,0)∪(0,+∞),定義域關(guān)于坐標(biāo)原點(diǎn)對稱,且對任意的x(x≠0)有f(-x)==-=-f(x),所以,函數(shù)f(x)=是奇函數(shù).
(3)函數(shù)的定義域?yàn)閷?shí)數(shù)集R,定義域關(guān)于坐標(biāo)原點(diǎn)對稱,且對任意的x∈R,都有f(-x)=|-x-2|-|-x+2|=|x+2|-|x-2
10、|=-(|x-2|-|x+2|)=-f(x),所以,函數(shù)f(x)=|x-2|-|x+2|是奇函數(shù).
(4)函數(shù)的定義域?yàn)閇1,+∞),由于函數(shù)f(x)的定義域不關(guān)于坐標(biāo)原點(diǎn)對稱,故函數(shù)f(x)既不是奇函數(shù)也不是偶函數(shù).
題型二 奇偶函數(shù)的圖像特征及應(yīng)用
例2 (1)如圖①,給出奇函數(shù)y=f(x)的局部圖像,試作出y軸右側(cè)的圖像并求出f(3)的值.
(2)如圖②,給出偶函數(shù)y=f(x)的局部圖像,試作出它在y軸右側(cè)的圖像,并比較f(1)與f(3)的大?。?
[解] (1)奇函數(shù)y=f(x)在y軸左側(cè)圖像上任一點(diǎn)P(-x,-f(x))關(guān)于原點(diǎn)的對稱點(diǎn)是P′(x,f(x)).下圖為
11、補(bǔ)充后的圖像.易知f(3)=-2.
(2)偶函數(shù)y=f(x)在y軸左側(cè)圖像上任一點(diǎn)P(-x,f(x))關(guān)于y軸的對稱點(diǎn)是P′(x,f(x)),如圖為補(bǔ)充后的圖像,易知f(1)>f(3).
金版點(diǎn)睛
用奇偶函數(shù)圖像的對稱性作圖
給出奇函數(shù)(或偶函數(shù))在直角坐標(biāo)平面內(nèi)的某個(gè)半平面上的圖像,要作出它在另一個(gè)半平面內(nèi)的圖像是依據(jù)奇、偶函數(shù)圖像的對稱性.其過程是作出原圖像上幾個(gè)關(guān)鍵點(diǎn)(圖像的最高點(diǎn)、最低點(diǎn)等)關(guān)于原點(diǎn)或y軸的對稱點(diǎn),然后按原圖像的特征用平滑曲線連接這些點(diǎn),就作出了它在另外一個(gè)半平面內(nèi)的圖像.
奇函數(shù)y=f(x)的局部圖像如圖,試作出該函數(shù)在y軸左側(cè)部分
12、的圖像,并根據(jù)圖像寫出y=f(x)(x∈R)的單調(diào)遞增區(qū)間.
解 將奇函數(shù)y=f(x)在y軸左側(cè)的圖像補(bǔ)充后如圖所示.
由圖像可知,函數(shù)y=f(x)的單調(diào)遞增區(qū)間為(-∞,-3)、(-1,0)、(0,1)和(3,+∞).
1.下列函數(shù)為奇函數(shù)的是( )
A.y=-|x| B.y=2-x
C.y= D.y=-x2+8
答案 C
解析 A,D中,函數(shù)均為偶函數(shù),B中函數(shù)為非奇非偶函數(shù),而C中函數(shù)為奇函數(shù).
2.若函數(shù)f(x)為定義在R上的奇函數(shù),下列結(jié)論不正確的是( )
A.f(-x)+f(x)=0
B.f(-x)-f(x)=-2f(x)
13、
C.f(-x)f(x)≤0
D.=-1
答案 D
解析 ∵f(x)為R上的奇函數(shù),∴f(-x)=-f(x),
∴f(-x)+f(x)=0,f(-x)-f(x)=-2f(x),f(-x)·f(x)=-[f(x)]2≤0,∴A,B,C正確.
而D不一定成立,如f(x)=x,則==-1(x≠0),即當(dāng)x=0時(shí),無意義.
3.已知函數(shù)f(x)是奇函數(shù),函數(shù)g(x)是偶函數(shù),且f(-1)+g(1)=2,f(1)+g(-1)=4,則g(1)等于( )
A.4 B.3
C.2 D.1
答案 B
解析 由題意知f(-1)+g(1)=-f(1)+g(1)=2,f(1)+
14、g(-1)=f(1)+g(1)=4.兩式相加,解得g(1)=3.
4.偶函數(shù)f(x)在區(qū)間[0,+∞)上的圖像如圖,則函數(shù)f(x)的增區(qū)間為________.
答案 [-1,0],[1,+∞)
解析 偶函數(shù)的圖像關(guān)于y軸對稱,補(bǔ)全圖像后可知函數(shù)f(x)的增區(qū)間為[-1,0],[1,+∞).
5.判斷下列函數(shù)的奇偶性:
(1)f(x)=x2(x2+2);
(2)f(x)=|x+1|-|x-1|;
(3)f(x)=.
解 (1)∵x∈R,關(guān)于原點(diǎn)對稱,
又∵f(-x)=(-x)2[(-x)2+2]
=x2(x2+2)=f(x),
∴f(x)為偶函數(shù).
(2)∵x∈R,關(guān)于原點(diǎn)對稱,
又∵f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-(|x+1|-|x-1|)=-f(x),
∴f(x)為奇函數(shù).
(3)f(x)的定義域?yàn)閇-1,0)∪(0,1],關(guān)于原點(diǎn)對稱,
又∵f(-x)==-=-f(x).
∴f(x)為奇函數(shù).
8