2022年高中數(shù)學(xué) 第三章《空間向量及其運(yùn)算》教案2 新人教A版選修2-1

上傳人:xt****7 文檔編號(hào):105162331 上傳時(shí)間:2022-06-11 格式:DOC 頁數(shù):2 大?。?5.52KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高中數(shù)學(xué) 第三章《空間向量及其運(yùn)算》教案2 新人教A版選修2-1_第1頁
第1頁 / 共2頁
2022年高中數(shù)學(xué) 第三章《空間向量及其運(yùn)算》教案2 新人教A版選修2-1_第2頁
第2頁 / 共2頁

最后一頁預(yù)覽完了!喜歡就下載吧,查找使用更方便

9.9 積分

下載資源

資源描述:

《2022年高中數(shù)學(xué) 第三章《空間向量及其運(yùn)算》教案2 新人教A版選修2-1》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學(xué) 第三章《空間向量及其運(yùn)算》教案2 新人教A版選修2-1(2頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高中數(shù)學(xué) 第三章《空間向量及其運(yùn)算》教案2 新人教A版選修2-1 一、課題:空間向量及其運(yùn)算(2) 二、教學(xué)目標(biāo):1.理解共線向量定理和共面向量定理及它們的推論; 2.掌握空間直線、空間平面的向量參數(shù)方程和線段中點(diǎn)的向量公式. 三、教學(xué)重、難點(diǎn):共線、共面定理及其應(yīng)用. 四、教學(xué)過程: (一)復(fù)習(xí):空間向量的概念及表示; (二)新課講解: 1.共線(平行)向量: 如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量。讀作:平行于,記作:. 2.共線向量定理: 對空間任意兩個(gè)向量的充要條件是存在實(shí)數(shù),使(唯一). 推論:如果為經(jīng)

2、過已知點(diǎn),且平行于已知向量的直線,那么對任一點(diǎn),點(diǎn)在直線上的充要條件是存在實(shí)數(shù),滿足等式①,其中向量叫做直線的方向向量。在上取,則①式可化為或② 當(dāng)時(shí),點(diǎn)是線段的中點(diǎn),此時(shí)③ ①和②都叫空間直線的向量參數(shù)方程,③是線段的中點(diǎn)公式. 3.向量與平面平行: 已知平面和向量,作,如果直線平行于或在內(nèi),那么我們說向量平行于平面,記作:. 通常我們把平行于同一平面的向量,叫做共面向量. 說明:空間任意的兩向量都是共面的. 4.共面向量定理: 如果兩個(gè)向量不共線,與向量共面的充要條件是存在實(shí)數(shù)使. 推論:空間一點(diǎn)位于平面內(nèi)的充分必要條件是存在有序?qū)崝?shù)對,使或?qū)臻g任一點(diǎn),

3、有① 上面①式叫做平面的向量表達(dá)式. (三)例題分析: 例1.已知三點(diǎn)不共線,對平面外任一點(diǎn),滿足條件, 試判斷:點(diǎn)與是否一定共面? 解:由題意:, ∴, ∴,即, 所以,點(diǎn)與共面. 說明:在用共面向量定理及其推論的充要條件進(jìn)行向量共面判斷的時(shí)候,首先要選擇恰當(dāng)?shù)某湟獥l件形式,然后對照形式將已知條件進(jìn)行轉(zhuǎn)化運(yùn)算. 【練習(xí)】:對空間任一點(diǎn)和不共線的三點(diǎn),問滿足向量式 (其中)的四點(diǎn)是否共面? 解:∵, ∴, ∴,∴點(diǎn)與點(diǎn)共面. 例2.已知,從平面外一點(diǎn)引向量 , (1)求證:四點(diǎn)共面; (2)平面平面. 解:(1)∵四邊形是平行四邊形,∴, ∵, ∴共面; (2)∵,又∵, ∴ 所以,平面平面. 五、課堂練習(xí):課本第96頁練習(xí)第1、2、3題. 六、課堂小結(jié):1.共線向量定理和共面向量定理及其推論; 2.空間直線、平面的向量參數(shù)方程和線段中點(diǎn)向量公式. 七、作業(yè): 1.已知兩個(gè)非零向量不共線,如果,,, 求證:共面. 2.已知,,若,求實(shí)數(shù)的值。 3.如圖,分別為正方體的棱的中點(diǎn), 求證:(1)四點(diǎn)共面;(2)平面平面. 4.已知分別是空間四邊形邊的中點(diǎn), (1)用向量法證明:四點(diǎn)共面; (2)用向量法證明:平面.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!