2022年高考數(shù)學(xué)一輪復(fù)習(xí) 滾動(dòng)測試卷五 文 北師大版
《2022年高考數(shù)學(xué)一輪復(fù)習(xí) 滾動(dòng)測試卷五 文 北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)一輪復(fù)習(xí) 滾動(dòng)測試卷五 文 北師大版(7頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué)一輪復(fù)習(xí) 滾動(dòng)測試卷五 文 北師大版 滾動(dòng)測試卷第17頁 ? 一、選擇題(本大題共12小題,每小題5分,共60分) 1.已知全集U=R,A={x|x≥1},B={x|0≤x<5},則(?UA)∪(?UB)=( ) A.{x|x≥0} B.{x|x<1,或x≥5} C.{x|x≤1,或x≥5} D.{x|x<0,或x≥5} 答案:B 解析:由題意可得,?UA={x|x<1},?UB={x|x<0,或x≥5}, 則(?UA)∪(?UB)={x|x<1,或x≥5},故選B. 2.(xx湖北,文2)我國古代
2、數(shù)學(xué)名著《數(shù)書九章》有“米谷粒分”題:糧倉開倉收糧,有人送來米1 534石,驗(yàn)得米內(nèi)夾谷,抽樣取米一把,數(shù)得254粒內(nèi)夾谷28粒,則這批米內(nèi)夾谷約為( ) A.134石 B.169石 C.338石 D.1 365石 答案:B 解析:米內(nèi)含谷的概率約為,故這批米內(nèi)夾谷約為×1 534≈169(石). 3.(xx遼寧五校聯(lián)考)對(duì)于一組數(shù)據(jù)xi(i=1,2,3,…,n),如果將它們改變?yōu)閤i+C(i=1,2,3,…,n),其中C≠0,則下列結(jié)論正確的是( ) A.平均數(shù)與方差均不變 B.平均數(shù)變,方差保持不變 C.平均數(shù)不變,方差變 D.平均數(shù)與方差均發(fā)生變化
3、答案:B 解析:由平均數(shù)的定義,可知每個(gè)個(gè)體增加C,則平均數(shù)也增加C,方差不變,故選B. 4.某一幾何體的三視圖如圖所示,則該幾何體的表面積為( ) A.54 B.58 C.60 D.63 答案:B 解析:由三視圖可知,該幾何體是一個(gè)棱長為3的正方體截去一個(gè)長、寬、高分別為1,1,3的長方體,幾何體的表面積為:大正方體的表面積+長方體的兩個(gè)側(cè)面的面積-長方體的兩個(gè)底面的面積,即S=6×32+2×1×3-2×12=58. 5.設(shè)不等式組表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到坐標(biāo)原點(diǎn)的距離大于2的概率是( ) A. B. C. D. 答案:D 解析:不等式組表示
4、坐標(biāo)平面內(nèi)的一個(gè)正方形區(qū)域,設(shè)區(qū)域內(nèi)點(diǎn)的坐標(biāo)為(x,y),則在區(qū)域內(nèi)取點(diǎn),此點(diǎn)到坐標(biāo)原點(diǎn)的距離大于2表示的區(qū)域就是圓x2+y2=4的外部,即圖中的陰影部分,故所求的概率為. 6.已知數(shù)列{an}滿足a1=2,a2=1,,則a10=( ) A. B. C. D. 答案:D 解析:由等差中項(xiàng)可知是等差數(shù)列,且首項(xiàng)為,公差d=, 所以+(n-1)×, 所以an=,所以a10=. 7.(xx江西景德鎮(zhèn)模擬)在樣本頻率分布直方圖中,共有五個(gè)小長方形,這五個(gè)小長方形的面積由小到大成等差數(shù)列{an}.已知a2=2a1,且樣本容量為300,則小長方形面積最大的一組的頻數(shù)為( ) A.1
5、00 B.120 C.150 D.200 答案:A 解析:設(shè)公差為d,則a1+d=2a1,所以a1=d,所以d+2d+3d+4d+5d=1,所以d=,所以面積最大的一組的頻率等于×5=.所以小長方形面積最大的一組的頻數(shù)為300×=100. 8.(xx北京,文4)某校老年、中年和青年教師的人數(shù)見下表,采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本中,青年教師有320人,則該樣本中的老年教師人數(shù)為( ) 類別 人數(shù) 老年教師 900 中年教師 1 800 青年教師 1 600 合計(jì) 4 300 A.90 B.100 C.180 D.300 答案:C 解析:
6、方法一:由題意,總體中青年教師與老年教師的比例為. 設(shè)樣本中老年教師的人數(shù)為x,由分層抽樣的性質(zhì)可得總體與樣本中青年教師與老年教師的比例相等, 即,解得x=180.故選C. 方法二:由已知分層抽樣中青年教師的抽樣比為, 由分層抽樣的性質(zhì)可得老年教師的抽樣比也等于, 所以樣本中老年教師的人數(shù)為900×=180.故選C. 9.當(dāng)a為任意實(shí)數(shù)時(shí),直線(a-1)x-y+a+1=0恒過點(diǎn)C,則以C為圓心,半徑為的圓的方程為( ) A.x2+y2-2x+4y=0 B.x2+y2+2x+4y=0 C.x2+y2+2x-4y=0 D.x2+y2-2x-4y=0 答案:C 解析:把直線方程
7、化為(-x-y+1)+a(x+1)=0, 令∴直線過定點(diǎn)C(-1,2). ∴圓C的方程為(x+1)2+(y-2)2=5,化為一般式為x2+y2+2x-4y=0. 10.(xx合肥二檢)從兩名男生和兩名女生中,任意選擇兩人在星期六、星期日參加某公益活動(dòng),每天一人,則星期六安排一名男生、星期日安排一名女生的概率為( ) A. B. C. D. 答案:A 解析:設(shè)兩名女生為a1,a2,兩名男生為b1,b2,則所有可能如下:(a1,a2),(a1,b1),(a1,b2),(a2,a1),(a2,b1),(a2,b2),(b1,b2),(b1,a1),(b1,a2),(b2,b1),(b2
8、,a1),(b2,a2),共12種,其中星期六安排一名男生、星期日安排一名女生包括4種情況,所以其概率為P=,故選A.
11.下列四個(gè)圖中,函數(shù)y=的圖像可能是( )
答案:C
解析:∵y=是奇函數(shù),其圖像向左平移1個(gè)單位所得圖像對(duì)應(yīng)的函數(shù)解析式為y=,
∴y=的圖像關(guān)于(-1,0)中心對(duì)稱,故排除A,D,當(dāng)x<-2時(shí),y<0恒成立,排除B.
12.已知向量的夾角為θ,||=2,||=1,=t=(1-t),||在t=t0時(shí)取得最小值,當(dāng)0 9、-t,
∴=(1-t)2+t2-2t(1-t)=(1-t)2+4t2-4t(1-t)cos θ
=(5+4cos θ)t2+(-2-4cos θ)t+1.
由二次函數(shù)知當(dāng)上式取最小值時(shí),t0=.
由題意可得0<,
解得- 10、0分到450分之間的1 000名學(xué)生的成績,并根據(jù)這1 000名學(xué)生的成績畫出樣本的頻率分布直方圖(如圖),則成績在[300,350)內(nèi)的學(xué)生人數(shù)共有 人.?
答案:300
解析:由頻率分布直方圖可得成績在[300,350)的頻率是1-(0.001+0.001+0.004+0.005+0.003)×50=1-0.7=0.3,所以成績在[300,350)的學(xué)生人數(shù)是0.3×1 000=300.
15.(xx遼寧錦州二模)已知函數(shù)f(x)=且函數(shù)g(x)=f(x)+x-a只有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是 .?
答案:(1,+∞)
解析:∵函數(shù)g(x)=f(x)+x-a 11、只有一個(gè)零點(diǎn),
∴只有一個(gè)x的值,使f(x)+x-a=0,
即f(x)=a-x.
令h(x)=a-x,則函數(shù)f(x)與h(x)只有一個(gè)交點(diǎn),如圖所示:
當(dāng)a≤1時(shí),h(x)=a-x與f(x)有兩個(gè)交點(diǎn),
當(dāng)a>1時(shí),h(x)=a-x與f(x)有一個(gè)交點(diǎn);
∴實(shí)數(shù)a的取值范圍是(1,+∞).
16.某單位為了制定節(jié)能減排的計(jì)劃,隨機(jī)統(tǒng)計(jì)了某4天的用電量y(單位:度)與當(dāng)天氣溫x(單位: ℃),并制作了對(duì)照表(如表所示).由表中數(shù)據(jù),得線性回歸方程y=-2x+a,當(dāng)某天的氣溫為-5 ℃時(shí),預(yù)測當(dāng)天的用電量約為 度.?
x
18
13
10
-1
y
24
3 12、4
38
64
答案:70
解析:氣溫的平均值×(18+13+10-1)=10,用電量的平均值×(24+34+38+64)=40,因?yàn)榛貧w直線必經(jīng)過點(diǎn)(),將其代入線性回歸方程得40=-2×10+a,解得a=60,故回歸方程為y=-2x+60.當(dāng)x=-5時(shí),y=-2×(-5)+60=70.所以當(dāng)某天的氣溫為-5 ℃時(shí),預(yù)測當(dāng)天的用電量約為70度.
三、解答題(本大題共6小題,共70分)
17.(10分)(xx遼寧錦州一模)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,q=(2a,1),p=(2b-c,cos C),且p∥q.
求:(1)sin A的值;
(2)三角 13、函數(shù)式+1的取值范圍.
解:(1)∵p∥q,∴2acos C=1×(2b-c).
根據(jù)正弦定理,得2sin Acos C=2sin B-sin C,
又∵sin B=sin(A+C)
=sin Acos C+cos Asin C,
∴2cos Asin C-sin C=0,
即sin C(2cos A-1)=0.
∵C是三角形的內(nèi)角,∴sin C≠0,
∴2cos A-1=0,可得cos A=.
∵A是三角形的內(nèi)角,
∴A=,得sin A=.
(2)∵+1=+1
=2cos C(sin C-cos C)+1
=sin 2C-cos 2C,
∴+1=sin.
∵A= 14、,得C∈,∴2C-,
可得- 15、.
(2)∵+…+=an+1,①
∴=a2,∴c1=3.
又+…+=an(n≥2),②
①-②得=an+1-an=2,∴cn=2bn=2·(n≥2),
∴cn=
當(dāng)n=1時(shí),Sn=c1=3,當(dāng)n≥2時(shí),Sn=c1+c2+…+cn
=3+2·(31+32+…+3n-1)=3+2·=3n.
所以Sn=3n.
19.(12分)(xx河北保定調(diào)研)某高校為調(diào)查學(xué)生喜歡“應(yīng)用統(tǒng)計(jì)”課程是否與性別有關(guān),隨機(jī)抽取了選修課程的55名學(xué)生,得到數(shù)據(jù)如下表:
喜歡“應(yīng)用統(tǒng)計(jì)”課程
不喜歡“應(yīng)用統(tǒng)計(jì)”課程
總計(jì)
男生
20
5
25
女生
10
20
30
總計(jì)
30 16、
25
55
(1)能否有99.5%的把握認(rèn)為喜歡“應(yīng)用統(tǒng)計(jì)”課程與性別有關(guān)?
(2)用分層抽樣的方法從喜歡“應(yīng)用統(tǒng)計(jì)”課程的學(xué)生中抽取6名學(xué)生做進(jìn)一步調(diào)查,將這6名學(xué)生作為一個(gè)樣本,從中任選2人,求恰有1名男生和1名女生的概率.
下面的臨界值表供參考:
P(χ2≥k0)
0.15
0.10
0.05
0.25
0.010
0.005
0.001
k0
2.072
2.706
3.841
5.024
6.635
7.879
10.828
解:(1)由公式χ2=≈11.978>7.879,
所以有99.5%的把握認(rèn)為喜歡“應(yīng)用統(tǒng)計(jì) 17、”課程與性別有關(guān).
(2)設(shè)所抽樣本中有m個(gè)男生,則,得m=4,所以樣本中有4個(gè)男生,2個(gè)女生,分別記作B1,B2,B3,B4,G1,G2.從中任選2人的基本事件有(B1,B2),(B1,B3),(B1,B4),(B1,G1),(B1,G2),(B2,B3),(B2,B4),(B2,G1),(B2,G2),(B3,B4),(B3,G1),(B3,G2),(B4,G1),(B4,G2),(G1,G2),共15個(gè),
其中恰有1個(gè)男生和1個(gè)女生的事件有(B1,G1),(B1,G2),(B2,G1),(B2,G2),(B3,G1),(B3,G2),(B4,G1),(B4,G2),共8個(gè).
所以恰 18、有1名男生和1名女生的概率為.
20.(12分)
如圖,在四棱錐S-ABCD中,平面SAD⊥平面ABCD,四邊形ABCD為正方形,且P為AD的中點(diǎn),Q為SB的中點(diǎn),M為BC的中點(diǎn).
(1)求證:CD⊥平面SAD;
(2)求證:PQ∥平面SCD;
(3)若SA=SD,在棱SC上是否存在點(diǎn)N,使得平面DMN⊥平面ABCD?并證明你的結(jié)論.
證明:(1)因?yàn)樗倪呅蜛BCD為正方形,所以CD⊥AD.
又平面SAD⊥平面ABCD,且平面SAD∩平面ABCD=AD,所以CD⊥平面SAD.
(2)連接PM,QM.
因?yàn)镼,P,M分別為SB,AD,BC的中點(diǎn),
所以QM∥SC,PM 19、∥DC.
因?yàn)镼M∩PM=M,QM,PM?平面PQM,SC∩DC=C,
所以平面PQM∥平面SCD,
又PQ?平面PQM,
所以PQ∥平面SCD.
(3)存在點(diǎn)N,使得平面DMN⊥平面ABCD.
連接PC,DM交于點(diǎn)O,連接SP.
因?yàn)镾A=SD,P為AD的中點(diǎn),
所以SP⊥AD.
因?yàn)槠矫鍿AD⊥平面ABCD,
所以SP⊥平面ABCD,SP⊥PC.
在△SPC中,過O點(diǎn)作NO⊥PC交SC于點(diǎn)N,此時(shí)N為SC的中點(diǎn),
則SP∥NO,則NO⊥平面ABCD.
因?yàn)镹O?平面DMN,
所以平面DMN⊥平面ABCD,
所以存在滿足條件的點(diǎn)N.
21.(12分)某興趣小組 20、欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期
1月10日
2月10日
3月10日
4月10日
5月10日
6月10日
晝夜溫差x(℃)
10
11
13
12
8
6
就診人數(shù)y(個(gè))
22
25
29
26
16
12
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5 21、月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程y=bx+a;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考公式:b=,a=-b
解:(1)設(shè)抽到相鄰兩個(gè)月的數(shù)據(jù)為事件A.
因?yàn)閺?組數(shù)據(jù)中選取2組數(shù)據(jù)共有15種情況,每種情況都是等可能出現(xiàn)的.
其中,抽到相鄰兩個(gè)月的數(shù)據(jù)的情況有5種,
所以P(A)=.
(2)由數(shù)據(jù)求得=11,=24.
由公式求得b=,
再由a=-b =-,
所以關(guān)于x的線性回歸方程為y=x-.
(3)當(dāng)x=10時(shí),y=<2,
同樣,當(dāng)x=6時(shí),y=<2, 22、
所以,該小組所得線性回歸方程是理想的.
22.(12分)(xx遼寧丹東二模)平面直角坐標(biāo)系xOy中,經(jīng)過橢圓C:=1(a>b>0)的一個(gè)焦點(diǎn)的直線x-y-=0與C相交于M,N兩點(diǎn),P為MN的中點(diǎn),且OP斜率是-.
(1)求橢圓C的方程;
(2)直線l分別與橢圓C和圓D:x2+y2=r2(b
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 110中國人民警察節(jié)(筑牢忠誠警魂感受別樣警彩)
- 2025正字當(dāng)頭廉字入心爭當(dāng)公安隊(duì)伍鐵軍
- XX國企干部警示教育片觀后感筑牢信仰之基堅(jiān)守廉潔底線
- 2025做擔(dān)當(dāng)時(shí)代大任的中國青年P(guān)PT青年思想教育微黨課
- 2025新年工作部署會(huì)圍繞六個(gè)干字提要求
- XX地區(qū)中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 支部書記上黨課筑牢清廉信念為高質(zhì)量發(fā)展?fàn)I造風(fēng)清氣正的環(huán)境
- 冬季消防安全知識(shí)培訓(xùn)冬季用電防火安全
- 2025加強(qiáng)政治引領(lǐng)(政治引領(lǐng)是現(xiàn)代政黨的重要功能)
- 主播直播培訓(xùn)直播技巧與方法
- 2025六廉六進(jìn)持續(xù)涵養(yǎng)良好政治生態(tài)
- 員工職業(yè)生涯規(guī)劃方案制定個(gè)人職業(yè)生涯規(guī)劃
- 2024年XX地區(qū)黨建引領(lǐng)鄉(xiāng)村振興工作總結(jié)
- XX中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 幼兒園期末家長會(huì)長長的路慢慢地走