2022年高考數(shù)學一輪總復習 17.1 坐標系教案 理 新人教A版

上傳人:xt****7 文檔編號:105368559 上傳時間:2022-06-11 格式:DOC 頁數(shù):5 大小:68.52KB
收藏 版權申訴 舉報 下載
2022年高考數(shù)學一輪總復習 17.1 坐標系教案 理 新人教A版_第1頁
第1頁 / 共5頁
2022年高考數(shù)學一輪總復習 17.1 坐標系教案 理 新人教A版_第2頁
第2頁 / 共5頁
2022年高考數(shù)學一輪總復習 17.1 坐標系教案 理 新人教A版_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學一輪總復習 17.1 坐標系教案 理 新人教A版》由會員分享,可在線閱讀,更多相關《2022年高考數(shù)學一輪總復習 17.1 坐標系教案 理 新人教A版(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學一輪總復習 17.1 坐標系教案 理 新人教A版 高考導航 考試要求 重難點擊 命題展望 一、坐標系 1.了解在平面直角坐標系中刻畫點的位置的方法,理解坐標系的作用. 2.了解在平面直角坐標系伸縮變換作用下平面圖形的變化情況. 3.能在極坐標系中用極坐標刻畫點的位置,體會在極坐標系和平面直角坐標系中刻畫點的位置的區(qū)別,能進行極坐標和直角坐標的互化. 4.能在極坐標系中給出簡單圖形(如過極點的直線、過極點或圓心在極點的圓)的方程.通過比較這些圖形在極坐標系和平面直角坐標系中的方程,體會在用方程刻畫平面圖形時選擇適當坐標系的意義. 5.了解在柱坐標系、

2、球坐標系中刻畫空間點的位置的方法,并與空間直角坐標系中刻畫點的位置的方法相比較,體會它們的區(qū)別. 二、參數(shù)方程 1.了解參數(shù)方程,了解參數(shù)的意義. 2.分析直線、圓和圓錐曲線的幾何性質(zhì),選擇適當?shù)膮?shù)寫出它們的參數(shù)方程. 3.了解平擺線和漸開線的生成過程,并能寫出它們的參數(shù)方程. 4.了解其他擺線的生成過程;了解擺線在實際中應用的實例;了解擺線在刻畫行星運動軌道中的作用.   本章重點: 1.根據(jù)問題的幾何特征選擇坐標系;坐標法思想;平面直角坐標系中的伸縮變換;極坐標系;直線和圓的極坐標方程. 2.根據(jù)問題的條件引進適當?shù)膮?shù),寫出參數(shù)方程,體會參數(shù)的意義;分析直線、圓和圓錐曲

3、線的幾何性質(zhì),選擇適當?shù)膮?shù)寫出它們的參數(shù)方程. 本章難點: 1.對伸縮變換中點的對應關系的理解;極坐標的不唯一性;曲線的極坐標方程. 2.根據(jù)幾何性質(zhì)選取恰當?shù)膮?shù),建立曲線的參數(shù)方程.   坐標系是解析幾何的基礎,為便于用代數(shù)的方法研究幾何圖形,常需建立不同的坐標系,以便使建立的方程更加簡單,參數(shù)方程是曲線在同一坐標系下不同于普通方程的又一種表現(xiàn)形式.某些曲線用參數(shù)方程表示比用普通方程表示更加方便. 本專題要求通過坐標系與參數(shù)方程知識的學習,使學生更全面地理解坐標法思想;能根據(jù)曲線的特點,選取適當?shù)那€方程表示形式,體會解決問題中數(shù)學方法的靈活性. 高考中,參數(shù)方程和極坐標是本

4、專題的重點考查內(nèi)容.對于柱坐標系、球坐標系,只要求了解即可. 知識網(wǎng)絡 17.1 坐標系 典例精析 題型一 極坐標的有關概念 【例1】已知△ABC的三個頂點的極坐標分別為A(5,),B(5,),C(-4,),試判斷△ABC的形狀,并求出它的面積. 【解析】在極坐標系中,設極點為O,由已知得∠AOB=,∠BOC=,∠AOC=. 又|OA|=|OB|=5,|OC|=4,由余弦定理得 |AC|2=|OA|2+|OC|2-2|OA|·|OC|·cos∠AOC=52+(4)2-2×5×4·cos=133, 所以|AC|=.同理,|BC|=. 所以

5、|AC|=|BC|,所以△ABC為等腰三角形. 又|AB|=|OA|=|OB|=5, 所以AB邊上的高h==, 所以S△ABC=××5=. 【點撥】判斷△ABC的形狀,就需要計算三角形的邊長或角,在本題中計算邊長較為容易,所以先計算邊長. 【變式訓練1】(1)點A(5,)在條件:①ρ>0,θ∈(-2π,0)下極坐標為    ,②ρ<0,θ∈(2π,4π)下極坐標為    ??; (2)點P(-,)與曲線C:ρ=cos 的位置關系是 . 【解析】(1)(5,-);(-5,).(2)點P在曲線C上. 題型二 直角坐標與極坐標的互化 【例2】⊙O1和⊙O2的極坐

6、標方程分別為ρ=4cos θ,ρ=-4sin θ. (1)把⊙O1和⊙O2的極坐標方程化為直角坐標方程; (2)求經(jīng)過⊙O1和⊙O2交點的直線的直角坐標方程. 【解析】(1)以極點為原點,極軸為x軸正半軸,建立直角坐標系,且兩坐標系取相同單位長. 因為x=ρcos θ,y=ρsin θ,由ρ=4cos θ,得ρ2=4ρcos θ, 所以x2+y2=4x,即x2+y2-4x=0為⊙O1的直角坐標方程. 同理,x2+y2+4y=0為⊙O2的直角坐標方程. (2) 由解得或 即⊙O1,⊙O2的交點為(0,0)和(2,-2)兩點, 故過交點的直線的直角坐標方程為x+y=0. 【點撥

7、】 互化的前提條件:原點對應著極點,x軸正向?qū)鴺O軸.將互化公式代入,整理可以得到. 【變式訓練2】在極坐標系中,設圓ρ=3上的點到直線ρ(cos θ+sin θ)=2的距離為d,求d的最大值. 【解析】將極坐標方程ρ=3化為普通方程x2+y2=9, ρ(cos θ+sin θ)=2可化為x+y=2. 在x2+y2=9上任取一點A(3cos α,3sin α), 則點A到直線的距離為d==,它的最大值為4. 題型三 極坐標的應用 【例3】過原點的一動直線交圓x2+(y-1)2=1于點Q,在直線OQ上取一點P,使P到直線y=2的距離等于|PQ|,用極坐標法求動直線繞原點一周時點P

8、的軌跡方程. 【解析】以O為極點,Ox為極軸,建立極坐標系,如右圖所示,過P作PR垂直于直線y=2,則有|PQ|=|PR|.設P(ρ,θ),Q(ρ0,θ),則有ρ0=2sin θ.因為|PR|=|PQ|,所以|2-ρsin θ|=|ρ-2sin θ|,所以 ρ=±2或sin θ=±1,即為點P的軌跡的極坐標方程,化為直角坐標方程為x2+y2=4或x=0. 【點撥】用極坐標法可使幾何中的一些問題得到很直接、簡單的解法,但在解題時關鍵是極坐標要選取適當,這樣可以簡化運算過程,轉(zhuǎn)化為直角坐標時也容易一些. 【變式訓練3】如圖,點A在直線x=5上移動,等腰△OPA的頂角∠OPA為120°(O,

9、P,A按順時針方向排列),求點P的軌跡方程. 【解析】取O為極點,x正半軸為極軸,建立極坐標系, 則直線x=5的極坐標方程為ρcos θ=5. 設A(ρ0,θ0),P(ρ,θ), 因為點A在直線ρcos θ=5上,所以ρ0cos θ0=5.① 因為△OPA為等腰三角形,且∠OPA=120°,而|OP|=ρ,|OA|=ρ0以及∠POA=30°, 所以ρ0=ρ,且θ0=θ-30°.② 把②代入①,得點P的軌跡的極坐標方程為ρcos(θ-30°)=5. 題型四 平面直角坐標系中坐標的伸縮變換 【例4】定義變換T:可把平面直角坐標系上的點P(x,y)變換成點P′(x′,y′).特

10、別地,若曲線M上一點P經(jīng)變換公式T變換后得到的點P′與點P重合,則稱點P是曲線M在變換T下的不動點. (1)若橢圓C的中心為坐標原點,焦點在x軸上,且焦距為2,長軸頂點和短軸頂點間的距離為2.求橢圓C的標準方程,并求出當tan θ=時,其兩個焦點F1、F2經(jīng)變換公式T變換后得到的點F1′和F2′的坐標; (2)當tan θ=時,求(1)中的橢圓C在變換T下的所有不動點的坐標. 【解析】(1)設橢圓C的標準方程為+=1(a>b>0), 由橢圓定義知焦距2c=2?c=,即a2-b2=2.① 又由已知得a2+b2=4,② 故由①、②可解得a2=3,b2=1. 即橢圓C的標準方程為+y2

11、=1, 且橢圓C兩個焦點的坐標分別為F1(-,0)和F2(,0). 對于變換T:當tanθ=時,可得 設F1′(x1,y1)和F2′(x2,y2)分別是由F1(-,0)和F2(,0)的坐標經(jīng)變換公式T變換得到. 于是 即F1′的坐標為(-,-); 又 即F2′的坐標為(,). (2)設P(x,y)是橢圓C在變換T下的不動點,則當tan θ=時, 有?x=3y,由點P(x,y)∈C,即P(3y,y)∈C,得+y2=1 ?因而橢圓C的不動點共有兩個,分別為(,)和(-,-). 【變式訓練4】在直角坐標系中,直線x-2y=2經(jīng)過伸縮變換         后變成直線2x′-y′=4. 【解析】 總結(jié)提高 1.平面內(nèi)一個點的極坐標有無數(shù)種表示方法. 如果規(guī)定ρ>0,0≤θ<2π,那么除極點外,平面內(nèi)的點可用唯一的極坐標(ρ,θ)表示;反之也成立. 2.熟練掌握幾種常用的極坐標方程,特別是直線和圓的極坐標方程.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!