高中數(shù)學(xué) 二函數(shù)單元測(cè)評(píng) 新人教B版必修1

上傳人:xt****7 文檔編號(hào):105443003 上傳時(shí)間:2022-06-12 格式:DOC 頁(yè)數(shù):6 大小:1.45MB
收藏 版權(quán)申訴 舉報(bào) 下載
高中數(shù)學(xué) 二函數(shù)單元測(cè)評(píng) 新人教B版必修1_第1頁(yè)
第1頁(yè) / 共6頁(yè)
高中數(shù)學(xué) 二函數(shù)單元測(cè)評(píng) 新人教B版必修1_第2頁(yè)
第2頁(yè) / 共6頁(yè)
高中數(shù)學(xué) 二函數(shù)單元測(cè)評(píng) 新人教B版必修1_第3頁(yè)
第3頁(yè) / 共6頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué) 二函數(shù)單元測(cè)評(píng) 新人教B版必修1》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 二函數(shù)單元測(cè)評(píng) 新人教B版必修1(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、高中數(shù)學(xué) 二函數(shù)單元測(cè)評(píng) 新人教B版必修1 一、選擇題:本大題共10小題,共50分. 1.函數(shù)f(x)=的定義域是(  ) A.       B. C. D. 解析:由2x-3>0得x>. 答案:D 2.下列函數(shù)為偶函數(shù)的是(  ) A.f(x)=x4-1 B.f(x)=x2(-1<x<3) C.f(x)=x+ D.f(x)= 解析:由定義域關(guān)于原點(diǎn)對(duì)稱,且f(-x)=f(x)得B、C、D都錯(cuò). 答案:A 3.函數(shù)y=x2-4x+1,x∈[2,5]的值域是(  ) A.[1,6] B.[-3,1] C.[-3,6] D.[-3,+∞) 解析:y=

2、(x-2)2-3,函數(shù)在[2,+∞)上是增函數(shù),所以f(2)=-3,又x∈[2,5],∴f(5)=6. 答案:C 4.下列選項(xiàng)中正確的是(  ) A.f(x)=-x2+x-6的單調(diào)增區(qū)間為 B.f(x)=-在[0,+∞)上是增函數(shù) C.f(x)=在(-∞,+∞)上是減函數(shù) D.f(x)=-x3+1是增函數(shù) 解析:f(x)=-x2+x-6在上是增函數(shù),故A正確;f(x)=-在[0,+∞)上是減函數(shù),f(x)=在(-∞,0)和(0,+∞)上是減函數(shù),f(x)=-x3+1是減函數(shù). 答案:A 5.已知函數(shù)f(x)=(a-x)|3a-x|,a是常數(shù)且a>0,下列結(jié)論正確的是(  )

3、 A.當(dāng)x=3a時(shí),有最小值0 B.當(dāng)x=3a時(shí),有最大值0 C.無(wú)最大值且無(wú)最小值 D.有最小值,但無(wú)最大值 解析:由f(x)=可畫(huà)出簡(jiǎn)圖. 分析知C正確. 答案:C 6.函數(shù)f(x)=-x+5的零點(diǎn)個(gè)數(shù)為(  ) A.1    B.2    C.3    D.4 解析:令f(x)=0得=x-5,∵函數(shù)y=與y=x-5圖像有兩個(gè)交點(diǎn),∴函數(shù)f(x)=-x+5有兩個(gè)零點(diǎn). 答案:B 7.若|x|≤1時(shí),y=ax+2a+1的值有正有負(fù),則a的取值范圍為(  ) A.a(chǎn)≥- B.a(chǎn)≤-1 C.-1<a<- D.以上都不是 解析:由于|x|≤1時(shí),y=ax+2

4、a+1的值有正有負(fù),則有f(-1)·f(1)<0,即(3a+1)·(a+1)<0,解得-1<a<-,故選C. 答案:C 8.若函數(shù)f(+1)=x2-2x,則f(3)等于(  ) A.0    B.1    C.2    D.3 解析:令+1=3,得x=2,∴f(3)=22-2×2=0. 答案:A 9.設(shè)f(x)是R上的偶函數(shù),且在(-∞,0)上為減函數(shù),若x1<0,且x1+x2>0,則(  ) A.f(x1)>f(x2) B.f(x1)=f(x2) C.f(x1)<f(x2) D.無(wú)法比較f(x1)與f(x2)的大小 解析:x1<0,且x1+x2>0,∴x1>-x2,

5、又f(x)在(-∞,0)為減函數(shù),∴f(x1)<f(-x2),又f(x)是偶函數(shù),∴f(x1)<f(x2). 答案:C 10.已知反比例函數(shù)y=的圖像如圖所示,則二次函數(shù)y=2kx2-4x+k2的圖像大致為(  ) A. B.      C. D. 解析:由反比例函數(shù)的圖像知k<0,∴二次函數(shù)開(kāi)口向下,排除A、B,又對(duì)稱軸為x=<0,排除C. 答案:D 第Ⅱ卷(非選擇題,共70分) 二、填空題:本大題共4小題,每小題5分,共20分. 11.已知f(x)為偶函數(shù),當(dāng)-1≤x<0時(shí),f(x)=x+1,那么當(dāng)0<x

6、≤1時(shí),f(x)=__________. 解析:0<x≤1時(shí),-1≤-x<0,f(-x)=-x+1, ∴此時(shí)f(x)=f(-x)=-x+1=1-x. 答案:1-x 12.已知函數(shù)f(x)滿足f(x+y)=f(x)+f(y),(x,y∈R),則下列各式恒成立的是__________. ①f(0)=0;②f(3)=3f(1);③f=f(1);④f(-x)·f(x)<0. 解析:令x=y(tǒng)=0得f(0)=0;令x=2,y=1得:f(3)=f(2)+f(1)=3f(1);令x=y(tǒng)=得:f(1)=2f, ∴f=f(1);令y=-x得:f(0)=f(x)+f(-x)即f(-x)=-f(x),∴

7、f(-x)·f(x)=-[f(x)]2≤0. 答案:①②③ 13.用二分法研究函數(shù)f(x)=x3+2x-1的零點(diǎn),第一次經(jīng)計(jì)算f(0)<0,f(0.5)>0,可得其中一個(gè)零點(diǎn)x0∈__________,第二次計(jì)算的f(x)的值為f(__________). 解析:由函數(shù)零點(diǎn)的存在性定理, ∵f(0)<0,f(0.5)>0, ∴在(0,0.5)存在一個(gè)零點(diǎn),第二次計(jì)算找中點(diǎn)即=0.25. 答案:(0,0.5) 0.25 14.若函數(shù)f(x)=x2-(2a-1)x+a+1是(1,2)上的單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍為_(kāi)_________. 解析:函數(shù)f(x)的對(duì)稱軸為x==a-,

8、 ∵函數(shù)在(1,2)上單調(diào),∴a-≥2或a-≤1,即a≥或a≤. 答案:a≥或a≤ 三、解答題:本大題共4小題,滿分50分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟. 15.(12分)已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2. (1)若函數(shù)的圖像經(jīng)過(guò)原點(diǎn),且滿足f(2)=0,求實(shí)數(shù)m的值; (2)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍. 解:(1)∵f(0)=0,f(2)=0, ∴∴m=1.(6分) (2)∵y=f(x)在[2,+∞)為增函數(shù), ∴對(duì)稱軸x=-≤2, ∴m≥0.(12分) 16.(12分)已知函數(shù)f(x)=. (1)求f(x)的定義

9、域; (2)判斷并證明f(x)的奇偶性; (3)求證:f=-f(x). 解:(1)由1-x2≠0得x≠±1,故f(x)的定義域?yàn)閧x|x≠±1,x∈R}.(4分) (2)f(x)是偶函數(shù),證明如下: 設(shè)x∈{x|x≠±1,x∈R},則-x∈{x|x≠±1,x∈R}. ∵f(-x)===f(x), ∴f(x)是偶函數(shù).(8分) (3)∵f= == =- =-f(x), ∴f=-f(x)成立.(12分) 17.(12分)已知函數(shù)f(x)的定義域?yàn)?-2,2),函數(shù)g(x)=f(x-1)+f(3-2x). (1)求函數(shù)g(x)的定義域; (2)若f(x)是奇函數(shù),且在定

10、義域上單調(diào)遞減,求不等式g(x)≤0的解集. 解:(1)由題意可知 解得即<x<.(4分) 故函數(shù)f(x)的定義域?yàn)?(6分) (2)由g(x)≤0,得f(x-1)+f(3-2x)≤0, ∴f(x-1)≤-f(3-2x).(8分) ∵f(x)為奇函數(shù),∴f(x-1)≤f(2x-3). 而f(x)在(-2,2)上單調(diào)遞減, ∴ 解得<x≤2.(10分) ∴g(x)≤0的解集為.(12分) 18.(14分)已知函數(shù)f(x)=,x∈[1,+∞). (1)當(dāng)a=時(shí),求函數(shù)f(x)的最小值; (2)若對(duì)任意x∈[1,+∞),f(x)>0恒成立,試求實(shí)數(shù)a的取值范圍. 解:(1)當(dāng)a=時(shí),f(x)=x++2. 用單調(diào)函數(shù)定義可證f(x)在區(qū)間[1,+∞)上為增函數(shù),(4分) ∴f(x)在區(qū)間[1,+∞)上的最小值為f(1)=. (6分) (2)在區(qū)間[1,+∞)上,f(x)=>0恒成立,等價(jià)于x2+2x+a>0恒成立.(8分) 設(shè)y=x2+2x+a,x∈[1,+∞). ∵y=x2+2x+a=(x+1)2+a-1在[1,+∞)上單調(diào)遞增, ∴當(dāng)x=1時(shí),ymin=3+a.(12分) 于是,當(dāng)且僅當(dāng)ymin=3+a>0時(shí),f(x)>0恒成立. ∴a>-3.(14分)

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!