高考數(shù)學(xué)一輪總復(fù)習(xí) 必考解答題 模板成形練 實際應(yīng)用題 理 蘇教版

上傳人:xt****7 文檔編號:105505387 上傳時間:2022-06-12 格式:DOC 頁數(shù):4 大小:78.52KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學(xué)一輪總復(fù)習(xí) 必考解答題 模板成形練 實際應(yīng)用題 理 蘇教版_第1頁
第1頁 / 共4頁
高考數(shù)學(xué)一輪總復(fù)習(xí) 必考解答題 模板成形練 實際應(yīng)用題 理 蘇教版_第2頁
第2頁 / 共4頁
高考數(shù)學(xué)一輪總復(fù)習(xí) 必考解答題 模板成形練 實際應(yīng)用題 理 蘇教版_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué)一輪總復(fù)習(xí) 必考解答題 模板成形練 實際應(yīng)用題 理 蘇教版》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)一輪總復(fù)習(xí) 必考解答題 模板成形練 實際應(yīng)用題 理 蘇教版(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、高考數(shù)學(xué)一輪總復(fù)習(xí) 必考解答題 模板成形練 實際應(yīng)用題 理 蘇教版 (建議用時:60分鐘) 1.在邊長為a的正三角形鐵皮的三個角切去三個全等的四邊形,再把它的邊沿虛線折起(如圖),做成一個無蓋的正三角形底鐵皮箱,當(dāng)箱底邊長為多少時,箱子容積最大?最大容積是多少? 解 (1)設(shè)箱底邊長為x,則箱高為h=×(0<x<a), 箱子的容積為V(x)=x2×sin 60°×h=ax2-x3(0<x<a). 由V′(x)=ax-x2=0解得x1=0(舍),x2=a, 且當(dāng)x∈時,V′(x)>0; 當(dāng)x∈時,V′(x)<0, 所以函數(shù)V(x)在x=a處取得極大值. 這個極大值就

2、是函數(shù)V(x)的最大值:V=a×2-×3=a3. 所以當(dāng)箱子底邊長為a時,箱子容積最大,最大值為a3. 2.如圖,某小區(qū)有一邊長為2(單位:百米)的正方形地塊OABC,其中OAE是一個游泳地,計劃在地塊OABC內(nèi)修一條與池邊AE相切的直路l(寬度不計),切點為M,并把該地塊分為兩部分,現(xiàn)以點O為坐標(biāo)原點,以線段OC所在直線為x軸,建立平面直角坐標(biāo)系,若池邊AE滿足函數(shù)y=-x2+2(0≤x≤)的圖象,且點M到邊OA距離為t. (1)當(dāng)t=時,求直路l所在的直線方程; (2)當(dāng)t為何值時,地塊OABC在直路l不含泳池那側(cè)的面積取到最大,最大值是多少? 解 (1)M,l:12x+9y

3、-22=0 (2)M(t,-t2+2),過切點M的切線l:y-(-t2+2)=-2t(x-t) 即y=-2tx+t2+2,令y=2得x=,故切線l與AB交于點; 令y=0,得x=+,又x=+在遞減,所以x=+∈故切線l與OC交于點. ∴地塊OABC在切線l右上部分區(qū)域為直角梯形, 面積S=·2=4-t-=4-≤2,t=1時取到等號,Smax=2. 3.濟(jì)南市“兩會”召開前,某政協(xié)委員針對自己提出的“環(huán)保提案”對某處的環(huán)境狀況進(jìn)行了實地調(diào)研.據(jù)測定,該處的污染指數(shù)與附近污染源的強(qiáng)度成正比,與到污染源的距離成反比,比例常數(shù)為k(k>0).現(xiàn)已知相距36 km的A,B兩家化工廠(污染源)

4、的污染強(qiáng)度分別為正數(shù)a,b,它們連線上任意一點C處的污染指數(shù)y等于兩化工廠對該處的污染指數(shù)之和.設(shè)AC=x(km). (1)試將y表示為x的函數(shù); (2)若a=1時,y在x=6處取得最小值,試求b的值. 解 (1)設(shè)點C受A污染源污染指數(shù)為,點C受B污染源污染指數(shù)為,其中k為比例系數(shù),且k>0. 從而點C處污染指數(shù)y=+(0<x<36). (2)因為a=1,所以,y=+, y′=k,令y′=0,得x=, 當(dāng)x∈時,函數(shù)單調(diào)遞減; 當(dāng)x∈時,函數(shù)單調(diào)遞增; ∴當(dāng)x=時,函數(shù)取得最小值. 又此時x=6,解得b=25,經(jīng)驗證符合題意. 所以,污染源B的污染強(qiáng)度b的值為25.

5、4.某個公園有個池塘,其形狀為直角△ABC,∠C=90°,AB=200米,BC=100米. (1)現(xiàn)在準(zhǔn)備養(yǎng)一批供游客觀賞的魚,分別在AB、BC、CA上取點D,E,F(xiàn),如圖(1),使得EF∥AB,EF⊥ED,在△DEF喂食,求△DEF面積S△DEF的最大值; (2)現(xiàn)在準(zhǔn)備新建造一個荷塘,分別在AB,BC,CA上取點D,E,F(xiàn),如圖(2),建造△DEF連廊(不考慮寬度)供游客休憩,且使△DEF為正三角形,求△DEF邊長的最小值. 解 (1)Rt△ABC中,∠C=90°,AB=200米,BC=100米. ∴cos B==,可得B=60° ∵EF∥AB,∴∠CEF=∠B=60° 設(shè)

6、=λ(0<λ<1),則CE=λCB=100λ米, Rt△CEF中,EF=2CE=200λ米, C到FE的距離d=CE=50λ米, ∵C到AB的距離為BC=50米, ∴點D到EF的距離為 h=50-50λ=50(1-λ)米 可得S△DEF=EF·h=5 000λ(1-λ)米2 ∵λ(1-λ)≤[λ+(1-λ)]2=,當(dāng)且僅當(dāng)λ=時等號成立, ∴當(dāng)λ=時,即E為AB中點時,S△DEF的最大值為 1 250米2 (2)設(shè)正△DEF的邊長為a,∠CEF=α, 則CF=a·sin α,AF=-a·sin α. 設(shè)∠EDB=∠1,可得 ∠1=180°-∠B-∠DEB=120°-∠DEB,α=180°-60°-∠DEB=120°-∠DEB ∴∠ADF=180°-60°-∠1=120°-α 在△ADF中,= 即=, 化簡得a[2sin(120°-α)+sin α]= ∴a==≥=(其中φ是滿足tan φ=的銳角). ∴△DEF邊長最小值為米.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!