2022-2023版高中數(shù)學(xué) 模塊綜合試卷 新人教A版選修2-3
《2022-2023版高中數(shù)學(xué) 模塊綜合試卷 新人教A版選修2-3》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022-2023版高中數(shù)學(xué) 模塊綜合試卷 新人教A版選修2-3(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022-2023版高中數(shù)學(xué) 模塊綜合試卷 新人教A版選修2-3 一、選擇題(本大題共12小題,每小題5分,共60分) 1.(2016·四川)設(shè)i為虛數(shù)單位,則(x+i)6的展開(kāi)式中含x4的項(xiàng)為( ) A.-15x4 B.15x4 C.-20ix4 D.20ix4 考點(diǎn) 二項(xiàng)展開(kāi)式中的特定項(xiàng)問(wèn)題 題點(diǎn) 求二項(xiàng)展開(kāi)式的特定項(xiàng) 答案 A 解析 由題意可知,含x4的項(xiàng)為Cx4i2=-15x4. 2.已知集合A={5},B={1,2},C={1,3,4},若從這三個(gè)集合中各取一個(gè)元素構(gòu)成空間直角坐標(biāo)系中點(diǎn)的坐標(biāo),則確定的不同點(diǎn)的個(gè)數(shù)為( ) A.36 B.35 C.
2、34 D.33 考點(diǎn) 分步乘法計(jì)數(shù)原理 題點(diǎn) 分步乘法計(jì)數(shù)原理的應(yīng)用 答案 D 解析 不考慮限定條件確定的不同點(diǎn)的個(gè)數(shù)為CCA=36, 但集合B,C中有相同元素1,由5,1,1三個(gè)數(shù)確定的不同點(diǎn)的個(gè)數(shù)只有三個(gè),故所求的個(gè)數(shù)為36-3=33. 3.拋擲一枚質(zhì)地均勻的硬幣兩次,在第一次正面向上的條件下,第二次反面向上的概率為( ) A. B. C. D. 考點(diǎn) 條件概率的定義及計(jì)算公式 題點(diǎn) 直接利用公式求條件概率 答案 C 解析 記事件A表示“第一次正面向上”,事件B表示“第二次反面向上”,則P(AB)=,P(A)=,∴P(B|A)==. 4.已知隨機(jī)變量ξ服從
3、正態(tài)分布N(1,σ2),且P(ξ<2)=0.6,則P(0<ξ<1)等于( ) A.0.4 B.0.3 C.0.2 D.0.1 考點(diǎn) 正態(tài)分布的概念及性質(zhì) 題點(diǎn) 求正態(tài)分布的均值或方差 答案 D 解析 由已知可得曲線關(guān)于直線x=1對(duì)稱(chēng),P(ξ<2)=0.6,所以P(ξ>2)=P(ξ<0)=0.4,故P(0<ξ<1)=P(0<ξ<2)=(1-0.4-0.4)=0.1. 5.給出以下四個(gè)說(shuō)法: ①繪制頻率分布直方圖時(shí),各小長(zhǎng)方形的面積等于相應(yīng)各組的組距; ②在刻畫(huà)回歸模型的擬合效果時(shí),R2的值越大,說(shuō)明擬合的效果越好; ③設(shè)隨機(jī)變量ξ服從正態(tài)分布N(4,22),則P(ξ>4
4、)=; ④對(duì)分類(lèi)變量X與Y,若它們的隨機(jī)變量K2的觀測(cè)值k越小,則判斷“X與Y有關(guān)系”的犯錯(cuò)誤的概率越?。? 其中正確的說(shuō)法是( ) A.①④ B.②③ C.①③ D.②④ 考點(diǎn) 獨(dú)立性檢驗(yàn)思想的應(yīng)用 題點(diǎn) 獨(dú)立性檢驗(yàn)與線性回歸方程、均值的綜合應(yīng)用 答案 B 解析?、僦懈餍¢L(zhǎng)方形的面積等于相應(yīng)各組的頻率;②正確,相關(guān)指數(shù)R2越大,擬合效果越好,R2越小,擬合效果越差;③隨機(jī)變量ξ服從正態(tài)分布N(4,22),正態(tài)曲線對(duì)稱(chēng)軸為x=4,所以P(ξ>4)=;④對(duì)分類(lèi)變量X與Y,若它們的隨機(jī)變量K2的觀測(cè)值k越小,則說(shuō)明“X與Y有關(guān)系”的犯錯(cuò)誤的概率越大. 6.設(shè)某地區(qū)歷史上從某次
5、特大洪水發(fā)生以后,在30年內(nèi)發(fā)生特大洪水的概率是0.8,在40年內(nèi)發(fā)生特大洪水的概率是0.85.在過(guò)去的30年內(nèi)該地區(qū)都未發(fā)生特大洪水,則在未來(lái)10年內(nèi)該地區(qū)發(fā)生特大洪水的概率是( ) A.0.25 B.0.3 C.0.35 D.0.4 考點(diǎn) 互斥、對(duì)立、獨(dú)立重復(fù)試驗(yàn)的概率問(wèn)題 題點(diǎn) 互斥事件、對(duì)立事件、獨(dú)立事件的概率問(wèn)題 答案 A 解析 設(shè)在未來(lái)10年內(nèi)該地區(qū)發(fā)生特大洪水的概率是P,根據(jù)條件可得,0.8×1+(1-0.8)×P=0.85,解得P=0.25. 7.某機(jī)構(gòu)對(duì)兒童記憶能力x和識(shí)圖能力y進(jìn)行統(tǒng)計(jì)分析,得到如下數(shù)據(jù): 記憶能力x 4 6 8 10 識(shí)圖能
6、力y 3 5 6 8 由表中數(shù)據(jù),求得線性回歸方程為=0.8x+,若某兒童記憶能力為12,則預(yù)測(cè)他的識(shí)圖能力約為( ) A.9.5 B.9.8 C.9.2 D.10 考點(diǎn) 線性回歸分析 題點(diǎn) 線性回歸方程的應(yīng)用 答案 A 解析 ∵=×(4+6+8+10)=7,=×(3+5+6+8)=5.5,∴樣本點(diǎn)的中心為(7,5.5), 代入回歸方程得5.5=0.8×7+,∴=-0.1, ∴=0.8x-0.1, 當(dāng)x=12時(shí),=0.8×12-0.1=9.5,故選A. 8.甲、乙、丙3位志愿者安排在周一至周五5天中參加某項(xiàng)志愿者活動(dòng),要求每人參加一天且每天至多安排一人,
7、并要求甲安排在另外兩位前面,則不同的安排方法共有( ) A.40種 B.30種 C.20種 D.60種 考點(diǎn) 排列的應(yīng)用 題點(diǎn) 排列的簡(jiǎn)單應(yīng)用 答案 C 解析 分類(lèi)解決.甲排周一,乙,丙只能是周二至周五4天中選兩天進(jìn)行安排,有A=12(種)方法;甲排周二,乙,丙只能是周三至周五選兩天安排,有A=6(種)方法;甲排周三,乙丙只能安排在周四和周五,有A=2(種)方法.由分類(lèi)加法計(jì)數(shù)原理可知,共有12+6+2=20(種)方法. 9.如圖所示,A,B,C表示3種開(kāi)關(guān),若在某段時(shí)間內(nèi)它們正常工作的概率分別為0.9,0.8,0.7,那么此系統(tǒng)的可靠性為( ) A.0.504
8、 B.0.994 C.0.496 D.0.06 考點(diǎn) 互斥、對(duì)立、獨(dú)立重復(fù)試驗(yàn)的概率問(wèn)題 題點(diǎn) 互斥事件、對(duì)立事件、獨(dú)立事件的概率問(wèn)題 答案 B 解析 1-P( )=1-P()·P()·P() =1-0.1×0.2×0.3=1-0.006=0.994. 10.已知5的展開(kāi)式中含的項(xiàng)的系數(shù)為30,則a等于( ) A. B.- C.6 D.-6 考點(diǎn) 二項(xiàng)展開(kāi)式中的特定項(xiàng)問(wèn)題 題點(diǎn) 由特定項(xiàng)或特定項(xiàng)的系數(shù)求參數(shù) 答案 D 解析 5的展開(kāi)式通項(xiàng)Tk+1=C·(-1)kak·=(-1)kakC, 令-k=,則k=1, ∴T2=-aC,∴-aC=30,∴a=-6
9、,故選D. 11.假設(shè)每一架飛機(jī)的引擎在飛行中出現(xiàn)故障的概率為1-p,且各引擎是否有故障是獨(dú)立的,已知4引擎飛機(jī)中至少有3個(gè)引擎正常運(yùn)行,飛機(jī)就可成功飛行;2引擎飛機(jī)要2個(gè)引擎全部正常運(yùn)行,飛機(jī)才可以成功飛行.要使4引擎飛機(jī)更安全,則p的取值范圍是( ) A. B. C. D. 考點(diǎn) 獨(dú)立重復(fù)試驗(yàn)的計(jì)算 題點(diǎn) 用獨(dú)立重復(fù)試驗(yàn)的概率公式求概率 答案 B 解析 4引擎飛機(jī)成功飛行的概率為Cp3(1-p)+p4,2引擎飛機(jī)成功飛行的概率為p2,要使Cp3(1-p)+p4>p2,必有<p<1. 12.若在二項(xiàng)式n的展開(kāi)式中前三項(xiàng)的系數(shù)成等差數(shù)列,則把展開(kāi)式中所有的項(xiàng)重新排成一
10、列,有理項(xiàng)都互不相鄰的概率為( ) A. B. C. D. 考點(diǎn) 排列與組合的應(yīng)用 題點(diǎn) 排列、組合在古典概型中的應(yīng)用 答案 D 解析 注意到二項(xiàng)式n的展開(kāi)式的通項(xiàng)是Tk+1=C·()n-k·k=C·2-k·.依題意有C+C·2-2=2C·2-1=n,即n2-9n+8=0,(n-1)(n-8)=0(n≥2),解得n=8.∴二項(xiàng)式8的展開(kāi)式的通項(xiàng)是Tk+1=C·2-k·,展開(kāi)式中的有理項(xiàng)共有3項(xiàng),所求的概率為=. 二、填空題(本大題共4小題,每小題5分,共20分) 13.任意選擇四個(gè)日期,設(shè)X表示取到的四個(gè)日期中星期天的個(gè)數(shù),則E(X)=________,D(X)=____
11、____. 考點(diǎn) 二項(xiàng)分布、兩點(diǎn)分布的均值 題點(diǎn) 二項(xiàng)分布的均值 答案 解析 由題意得,X~B,所以E(X)=,D(X)=. 14.圍棋盒子中有多粒黑子和白子,已知從中取出2粒都是黑子的概率為,都是白子的概率是.則從中任意取出2粒恰好是同一色的概率是________. 考點(diǎn) 排列與組合的應(yīng)用 題點(diǎn) 排列、組合在古典概型中的應(yīng)用 答案 解析 設(shè)“從中取出2粒都是黑子”為事件A,“從中取出2粒都是白子”為事件B,“任意取出2粒恰好是同一色”為事件C,則C=A∪B,且事件A與B互斥.所以P(C)=P(A)+P(B)=+=.即任意取出2粒恰好是同一色的概率為. 15.某數(shù)學(xué)老
12、師身高為176 cm,他爺爺、父親和兒子的身高分別是173 cm,170 cm和182 cm.因兒子的身高與父親的身高有關(guān),該老師用線性回歸分析的方法預(yù)測(cè)他孫子的身高為_(kāi)_______ cm. 考點(diǎn) 線性回歸分析 題點(diǎn) 線性回歸方程的應(yīng)用 答案 183.5 解析 記從爺爺起向下各代依次為1,2,3,4,5用變量x表示,其中5代表孫子.各代人的身高為變量y,則有 x 1 2 3 4 y 173 170 176 182 計(jì)算知=2.5,=175.25.由回歸系數(shù)公式得=3.3, =-=175.25-3.3×2.5=167,∴線性回歸方程為=3.3x+167,當(dāng)x
13、=5時(shí),y=3.3×5+167=183.5,故預(yù)測(cè)其孫子的身高為183.5 cm. 16.某城市新修建的一條道路上有12盞路燈,為了節(jié)省用電而又不能影響正常的照明,可以熄滅其中的3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,則熄燈的方法有________種.(填數(shù)字) 考點(diǎn) 組合的應(yīng)用 題點(diǎn) 有限制條件的組合問(wèn)題 答案 56 解析 分析題意可知,最終剩余的亮著的燈共有9盞,且兩端的必須亮著,所以可用插空的方法,共有8個(gè)空可選,所以應(yīng)為C=56(種). 三、簡(jiǎn)答題(本大題共6小題,共70分) 17.(10分)已知(a2+1)n展開(kāi)式中的各項(xiàng)系數(shù)之和等于5的展開(kāi)式的常數(shù)項(xiàng),而(
14、a2+1)n的展開(kāi)式的系數(shù)最大的項(xiàng)等于54,求a的值. 考點(diǎn) 二項(xiàng)式定理的應(yīng)用 題點(diǎn) 二項(xiàng)式定理的簡(jiǎn)單應(yīng)用 解 5的展開(kāi)式的通項(xiàng)為T(mén)k+1=C5-kk=5-kC, 令20-5k=0,得k=4, 故常數(shù)項(xiàng)T5=C×=16. 又(a2+1)n展開(kāi)式的各項(xiàng)系數(shù)之和等于2n, 由題意知2n=16,得n=4, 由二項(xiàng)式系數(shù)的性質(zhì)知,(a2+1)n展開(kāi)式中系數(shù)最大的項(xiàng)是中間項(xiàng)T3, 故有Ca4=54,解得a=±. 18.(12分)從7名男生和5名女生中選出5人,分別求符合下列條件的選法數(shù). (1)A,B必須被選出; (2)至少有2名女生被選出; (3)讓選出的5人分別擔(dān)任體育委員
15、、文娛委員等5種不同職務(wù),但體育委員由男生擔(dān)任,文娛委員由女生擔(dān)任. 考點(diǎn) 排列與組合的應(yīng)用 題點(diǎn) 排列組合的綜合應(yīng)用 解 (1)除選出A,B外,從其他10個(gè)人中再選3人,選法數(shù)為C=120. (2)按女生的選取情況分類(lèi):選2名女生、3名男生,選3名女生、2名男生,選4名女生、1名男生,選5名女生.所有選法數(shù)為CC+CC+CC+C=596. (3)選出1名男生擔(dān)任體育委員,再選出1名女生擔(dān)任文娛委員,從剩下的10人中任選3人擔(dān)任其他3種職務(wù).根據(jù)分步乘法計(jì)數(shù)原理,所有選法數(shù)為C·C·A=25 200. 19.(12分)近年來(lái),隨著以煤炭為主的能源消耗大幅攀升、機(jī)動(dòng)車(chē)持有量急劇增加,
16、某市空氣中的PM2.5(直徑小于等于2.5微米的顆粒物)的含量呈逐年上升的趨勢(shì),如圖是根據(jù)該市環(huán)保部門(mén)提供的2011年至2015年該市PM2.5年均濃度值畫(huà)成的散點(diǎn)圖.(為便于計(jì)算,把2011年編號(hào)為1,2012年編號(hào)為2,…,2015年編號(hào)為5) (1)以PM2.5年均濃度值為因變量,年份的編號(hào)為自變量,利用散點(diǎn)圖提供的數(shù)據(jù),用最小二乘法求出該市PM2.5年均濃度值與年份編號(hào)之間的線性回歸方程=x+; (2)按世界衛(wèi)生組織(WHO)過(guò)渡期-1的標(biāo)準(zhǔn),空氣中的PM2.5的年均濃度限值為35微克/立方米,該市若不采取措施,試預(yù)測(cè)到哪一年該市空氣中PM2.5的年均濃度值將超過(guò)世界衛(wèi)生組
17、織(WHO)過(guò)渡期-1設(shè)定的限制. 參考公式:=,=-. 考點(diǎn) 線性回歸分析 題點(diǎn) 線性回歸方程的應(yīng)用 解 (1)由散點(diǎn)圖可得,變量xi,yi組成的幾組數(shù)據(jù)為(1,13),(2,15),(3,20),(4,22),(5,25), 則=3,=19, 所以==3.1. =-=19-3.1×3=9.7. 所以所求線性回歸方程為=3.1x+9.7. (2)由3.1x+9.7>35,得x>8.16, 因?yàn)閤∈N,所以x=9. 故可預(yù)測(cè)到2019年該市空氣中PM2.5的年均濃度值將超過(guò)世界衛(wèi)生組織(WHO)過(guò)渡期-1設(shè)定的限值. 20.(12分)將一個(gè)半徑適當(dāng)?shù)男∏蚍湃肴鐖D
18、所示的容器最上方的入口處,小球?qū)⒆杂上侣洌∏蛟谙侣溥^(guò)程中,將3次遇到黑色障礙物,最后落入A袋或B袋中.已知小球每次遇到黑色障礙物時(shí)向左、右兩邊下落的概率都是. (1)求小球落入A袋中的概率P(A); (2)在容器入口處依次放入4個(gè)小球,記ξ為落入A袋中小球的個(gè)數(shù),試求ξ=3的概率與ξ的均值E(ξ). 考點(diǎn) 常見(jiàn)的幾種均值 題點(diǎn) 二項(xiàng)分布的均值 解 (1)方法一 記小球落入B袋中的概率為P(B),則P(A)+P(B) =1. 由于小球每次遇到黑色障礙物時(shí)一直向左或者一直向右下落,小球?qū)⒙淙隑袋, ∴P(B)=3+3=, ∴P(A)=1-=. 方法二 由于小球每次遇到黑色障
19、礙物時(shí),有一次向左和兩次向右或兩次向左和一次向右下落時(shí)小球?qū)⒙淙階袋,∴P(A)=C3+C3=. (2)由題意,ξ~B, ∴P(ξ=3)=C31=, ∴E(ξ)=4×=3. 21.(12分)“中國(guó)式過(guò)馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對(duì)“中國(guó)式過(guò)馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問(wèn)卷調(diào)查,得到了如下列聯(lián)表: 男性 女性 總計(jì) 反感 10 不反感 8 總計(jì) 30 已知在這30人中隨機(jī)抽取1人抽到反感“中國(guó)式過(guò)馬路”的路人的概率是. (1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(直接寫(xiě)結(jié)果,不需要寫(xiě)求解過(guò)程)
20、,并據(jù)此資料分析反感“中國(guó)式過(guò)馬路”與性別是否有關(guān)? (2)若從這30人中的女性路人中隨機(jī)抽取2人參加一活動(dòng),記反感“中國(guó)式過(guò)馬路”的人數(shù)為X,求X的分布列和均值. 附:K2=. P(K2≥k0) 0.10 0.05 0.010 0.005 k0 2.706 3.841 6.635 7.879 考點(diǎn) 獨(dú)立性檢驗(yàn)思想的應(yīng)用 題點(diǎn) 獨(dú)立性檢驗(yàn)與線性回歸方程、均值的綜合應(yīng)用 解 (1) 男性 女性 總計(jì) 反感 10 6 16 不反感 6 8 14 總計(jì) 16 14 30 由已知數(shù)據(jù)得K2的觀測(cè)值k=≈1.158<2.706.
21、 所以,沒(méi)有充足的理由認(rèn)為反感“中國(guó)式過(guò)馬路”與性別有關(guān). (2)X的可能取值為0,1,2, P(X=0)==, P(X=1)==, P(X=2)==. 所以X的分布列為 X 0 1 2 P X的均值為E(X)=0×+1×+2×=. 22.(12分)設(shè)袋子中裝有a個(gè)紅球、b個(gè)黃球、c個(gè)藍(lán)球,且規(guī)定:取出1個(gè)紅球得1分,取出1個(gè)黃球得2分,取出1個(gè)藍(lán)球得3分. (1)當(dāng)a=3,b=2,c=1時(shí),從該袋子中依次任取(有放回,且每個(gè)球取到的機(jī)會(huì)均等)2個(gè)球,記隨機(jī)變量ξ為取出此2球所得分?jǐn)?shù)之和,求ξ的分布列; (2)從該袋子中任取(每球取到的機(jī)會(huì)均等)1個(gè)球,記隨機(jī)變量η為取出此球所得分?jǐn)?shù).若E(η)=,D(η)=,求a∶b∶c. 考點(diǎn) 均值與方差的應(yīng)用 題點(diǎn) 均值與方差的綜合應(yīng)用 解 (1)根據(jù)題意,得ξ的所有可能取值為2,3,4,5,6. 故P(ξ=2)==,P(ξ=3)==, P(ξ=4)==, P(ξ=5)==, P(ξ=6)==. 所以ξ的分布列為 ξ 2 3 4 5 6 P (2)根據(jù)題意,知η的分布列為 η 1 2 3 P 所以E(η)=++=, D(η)=2·+2·+2·=, 化簡(jiǎn) 解得a=3c,b=2c,故a∶b∶c=3∶2∶1.
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識(shí)競(jìng)賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫(kù)試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫(kù)試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫(kù)試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識(shí)測(cè)試題庫(kù)及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測(cè)工種技術(shù)比武題庫(kù)含解析
- 1 礦山應(yīng)急救援安全知識(shí)競(jìng)賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案