2022年高考數(shù)學 考點分析與突破性講練 專題31 橢圓及其性質(zhì) 理

上傳人:xt****7 文檔編號:105761780 上傳時間:2022-06-12 格式:DOC 頁數(shù):15 大?。?70.50KB
收藏 版權申訴 舉報 下載
2022年高考數(shù)學 考點分析與突破性講練 專題31 橢圓及其性質(zhì) 理_第1頁
第1頁 / 共15頁
2022年高考數(shù)學 考點分析與突破性講練 專題31 橢圓及其性質(zhì) 理_第2頁
第2頁 / 共15頁
2022年高考數(shù)學 考點分析與突破性講練 專題31 橢圓及其性質(zhì) 理_第3頁
第3頁 / 共15頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學 考點分析與突破性講練 專題31 橢圓及其性質(zhì) 理》由會員分享,可在線閱讀,更多相關《2022年高考數(shù)學 考點分析與突破性講練 專題31 橢圓及其性質(zhì) 理(15頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學 考點分析與突破性講練 專題31 橢圓及其性質(zhì) 理 一、考綱要求: 1.了解橢圓的實際背景,了解橢圓在刻畫現(xiàn)實世界和解決實際問題中的作用. 2.掌握橢圓的定義、幾何圖形、標準方程及簡單性質(zhì)(范圍、對稱性、頂點、離心率). 3.理解數(shù)形結合思想. 4.了解橢圓的簡單應用. 二、概念掌握和解題上注意點: 1.橢圓定義的應用主要有兩個方面:一是判定平面內(nèi)動點的軌跡是否為橢圓;二是利用定義求焦點三角形的周長、面積、弦長、最值和離心率等. 2.橢圓的定義式必須滿足2a>|F1F2|. 3.求橢圓的標準方程的方法有定義法與待定系數(shù)法,但基本方法是待定系數(shù)法,具體過程是先

2、定位,再定量,即首先確定焦點所在的位置,然后再根據(jù)條件建立關于a,b的方程組,若焦點位置不確定,可把橢圓方程設為Ax2+By2=1(A>0,B>0,A≠B)的形式. 4.求橢圓離心率的方法 ①直接求出a,c的值,利用離心率公式直接求解. ②列出含有a,b,c的齊次方程(或不等式),借助于b2=a2-c2消去b,轉化為含有e的方程(或不等式)求解. 5.利用橢圓幾何性質(zhì)求值或范圍的思路 求解與橢圓幾何性質(zhì)有關的參數(shù)問題時,要結合圖形進行分析,當涉及頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關系.建立關于a、b、c的方程或不等式. 6.直線與橢圓的位置關系的解題策略 (

3、1)解決直線與橢圓的位置關系的相關問題,其常規(guī)思路是先把直線方程與橢圓方程聯(lián)立,消元、化簡,然后應用根與系數(shù)的關系建立方程,解決相關問題.涉及弦中點的問題常常用“點差法”解決,往往會更簡單. (2)設直線與橢圓的交點坐標為A(x1,y1),B(x2,y2), 則|AB|==(k為直線斜率). 三、高考考題題例分析 例1.(2018課標卷I)設橢圓C:+y2=1的右焦點為F,過F的直線l與C交于A,B兩點,點M的坐標為(2,0). (1)當l與x軸垂直時,求直線AM的方程; (2)設O為坐標原點,證明:∠OMA=∠OMB. 【答案】(1)y=﹣x+,y=x﹣, (

4、2)見解析 證明:(2)當l與x軸重合時,∠OMA=∠OMB=0°, 當l與x軸垂直時,OM為AB的垂直平分線,∴∠OMA=∠OMB, 當l與x軸不重合也不垂直時,設l的方程為y=k(x﹣1),k≠0, A(x1,y1),B(x2,y2),則x1<,x2<, 直線MA,MB的斜率之和為kMA,kMB之和為kMA+kMB=+, 由y1=kx1﹣k,y2=kx2﹣k得kMA+kMB=, 將y=k(x﹣1)代入+y2=1可得(2k2+1)x2﹣4k2x+2k2﹣2=0, ∴x1+x2=,x1x2=, ∴2kx1x2﹣3k(x1+x2)+4k=(4k2﹣4k﹣12k2+8k2+4

5、k)=0 從而kMA+kMB=0, 故MA,MB的傾斜角互補, ∴∠OMA=∠OMB, 綜上∠OMA=∠OMB. 例7.(2017·全國卷Ⅰ)設A,B是橢圓C:+=1長軸的兩個端點.若C上存在點M滿足∠AMB=120°,則m的取值范圍是(  ) A.(0,1]∪[9,+∞) B.(0,]∪[9,+∞) C.(0,1]∪[4,+∞) D.(0,]∪[4,+∞) 【答案】A  【解析】法一:設焦點在x軸上,點M(x,y). 過點M作x軸的垂線,交x軸于點N, 則N(x,0). 故tan∠AMB=tan(∠AMN+∠BMN) ==. 又tan∠AMB=tan 120°=

6、-, 且由+=1可得x2=3-, 則==-. 解得|y|=. 又0<|y|≤,即0<≤,結合0<m<3解得0<m≤1. 對于焦點在y軸上的情況,同理亦可得m≥9. 則m的取值范圍是(0,1]∪[9,+∞). 故選A. 例8.(2017課標卷I)已知橢圓C:(a>b>0),四點P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三點在橢圓C上. (1)求C的方程; (2)設直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點. 【答案】(1) (2)見解析 試題解析:(1)由于,兩點關于y軸對稱,故由題

7、設知C經(jīng)過,兩點. 又由知,C不經(jīng)過點P1,所以點P2在C上. 因此,解得. 故C的方程為. 由題設可知. 設A(x1,y1),B(x2,y2),則x1+x2=,x1x2=. 而 . 由題設,故. 即. 解得. 當且僅當時,,欲使l:,即, 所以l過定點(2,) 例9.(2017·課標卷Ⅲ)已知橢圓C:+=1(a>b>0)的左、右頂點分別為A1,A2,且以線段A1A2為直徑的圓與直線bx-ay+2ab=0相切,則C的離心率為(  ) A. B. C. D. 【答案】A 例10.(2017課標卷II)設O為坐標原點,動點M在橢圓C:上,過M作

8、x軸的垂線,垂足為N,點P滿足。 (1) 求點P的軌跡方程; (2)設點Q在直線上,且。證明:過點P且垂直于OQ的直線l過C的左焦點F。 【答案】(1) 。 (2)證明略。 試題解析:(1)設,設,。 由得。 因為在C上,所以。 因此點P的軌跡方程為。 (2)由題意知。設,則 , 。 由得,又由(1)知,故 。 所以,即。又過點P存在唯一直線垂直于OQ,所以過點P且垂直于OQ的直線過C的左焦點F。 橢圓及其性質(zhì)練習題 一、選擇題 1.已知中心在原點的橢圓C的右焦點為F(1,0),離心率等于,則C的方程是(  ) A.+=1 B.+=1

9、 C.+=1 D.+=1 【答案】D 【解析】橢圓的焦點在x軸上,c=1. 又離心率為=, 故a=2,b2=a2-c2=4-1=3, 故橢圓的方程為+=1. 2.橢圓C:+=1的左右焦點分別為F1,F(xiàn)2,過F2的直線交橢圓C于A、B兩點,則△F1AB的周長為 (  ) A.12 B.16 C.20 D.24 【答案】C 3.直線l經(jīng)過橢圓的一個頂點和一個焦點,若橢圓中心到l的距離為其短軸長的,則該橢圓的離心率為

10、 (  ) A.    B. C. D. 【答案】B  【解析】如圖,|OB|為橢圓中心到l的距離,則|OA|·|OF|=|AF|·|OB|,即bc=a·,所以e==. 19.已知橢圓E的一個頂點為A(0,-1),焦點在x軸上,若橢圓右焦點到橢圓E的中心的距離是. (1)求橢圓E的方程; (2)設直線l:y=kx+1(k≠0)與該橢圓交于不同的兩點B,C,若坐標原點O到直線l的距離為,求△BOC的面積. 【答案】(1) +y2=1. (2) . (2)設B(x1,y1),C(x2,y

11、2),將直線方程與橢圓聯(lián)立整理得(3k2+1)x2+6kx=0, 由原點O到直線l的距離為=,得k2=, 又|BC|= ==2, ∴S△BOC=×|BC|×=, ∴△BOC的面積為. 20.已知曲線C的方程是mx2+ny2=1(m>0,n>0),且曲線過A,B兩點,O為坐標原點. (1)求曲線C的方程; (2)設M(x1,y1),N(x2,y2)是曲線C上兩點,向量p=(x1,y1),q=(x2,y2),且p·q=0,若直線MN過點,求直線MN的斜率. 【答案】(1) y2+4x2=1. (2) ±. 21.已知焦點在y軸上的橢圓E的中心是原點O,離心率等于

12、,以橢圓E的長軸和短軸為對角線的四邊形的周長為4.直線l:y=kx+m與y軸交于點P,與橢圓E相交于A,B兩個點. (1)求橢圓E的方程; (2)若=3,求m2的取值范圍. 【答案】(1) x2+=1 (2) (1,4). (2)根據(jù)已知得P(0,m),設A(x1,kx1+m),B(x2,kx2+m),由得, (k2+4)x2+2mkx+m2-4=0. 由已知得Δ=4m2k2-4(k2+4)(m2-4)>0,即k2-m2+4>0, 且x1+x2=,x1x2=. 由=3得x1=-3x2. ∴3(x1+x2)2+4x1x2=12x-12x=0. ∴+=0,即m2k2+m2

13、-k2-4=0. 當m2=1時,m2k2+m2-k2-4=0不成立, ∴k2=. ∵k2-m2+4>0,∴-m2+4>0, 即>0.∴1<m2<4. ∴m2的取值范圍是(1,4). 22.對于橢圓,有如下性質(zhì):若點是橢圓上的點,則橢圓在該點處的切線方程為.利用此結論解答下列問題.點是橢圓上的點,并且橢圓在點處的切線斜率為. (1)求橢圓的標準方程; (2)若動點在直線上,經(jīng)過點的直線,與橢圓相切,切點分別為,.求證:直線必經(jīng)過一定點. 【答案】(1) (2)直線必經(jīng)過一定點 (2)設,,, 則切線,切線.· ∵都經(jīng)過點, ∴,. 即直線的方程為. 又, ∴直線必經(jīng)過一定點.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!