2022高考數(shù)學(xué)一輪復(fù)習(xí) 第9章 解析幾何 專題研究1 曲線與方程練習(xí) 理

上傳人:xt****7 文檔編號:105790492 上傳時間:2022-06-12 格式:DOC 頁數(shù):7 大?。?6KB
收藏 版權(quán)申訴 舉報 下載
2022高考數(shù)學(xué)一輪復(fù)習(xí) 第9章 解析幾何 專題研究1 曲線與方程練習(xí) 理_第1頁
第1頁 / 共7頁
2022高考數(shù)學(xué)一輪復(fù)習(xí) 第9章 解析幾何 專題研究1 曲線與方程練習(xí) 理_第2頁
第2頁 / 共7頁
2022高考數(shù)學(xué)一輪復(fù)習(xí) 第9章 解析幾何 專題研究1 曲線與方程練習(xí) 理_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022高考數(shù)學(xué)一輪復(fù)習(xí) 第9章 解析幾何 專題研究1 曲線與方程練習(xí) 理》由會員分享,可在線閱讀,更多相關(guān)《2022高考數(shù)學(xué)一輪復(fù)習(xí) 第9章 解析幾何 專題研究1 曲線與方程練習(xí) 理(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022高考數(shù)學(xué)一輪復(fù)習(xí) 第9章 解析幾何 專題研究1 曲線與方程練習(xí) 理 1.已知點A(-1,0),B(2,4),△ABC的面積為10,則動點C的軌跡方程是(  ) A.4x-3y-16=0或4x-3y+16=0 B.4x-3y-16=0或4x-3y+24=0 C.4x-3y+16=0或4x-3y+24=0 D.4x-3y+16=0或4x-3y-24=0 答案 B 解析 可知AB的方程為4x-3y+4=0,又|AB|=5,設(shè)動點C(x,y).由題意可知×5×=10,所以4x-3y-16=0或4x-3y+24=0.故選B. 2.方程lg(x2+y2-1)=0所表示的曲線圖形是(  

2、) 答案 D 3.動圓M經(jīng)過雙曲線x2-=1的左焦點且與直線x=2相切,則圓心M的軌跡方程是(  ) A.y2=8x        B.y2=-8x C.y2=4x D.y2=-4x 答案 B 解析 雙曲線x2-=1的左焦點F(-2,0),動圓M經(jīng)過F且與直線x=2相切,則圓心M經(jīng)過F且與直線x=2相切,則圓心M到點F的距離和到直線x=2的距離相等,由拋物線的定義知軌跡是拋物線,其方程為y2=-8x. 4.(2017·皖南八校聯(lián)考)設(shè)點A為圓(x-1)2+y2=1上的動點,PA是圓的切線,且|PA|=1,則P點的軌跡方程為(  ) A.y2=2x B.(x-1)2+y

3、2=4 C.y2=-2x D.(x-1)2+y2=2 答案 D 解析 (直譯法)如圖,設(shè)P(x,y),圓心為M(1,0).連接MA,PM. 則MA⊥PA,且|MA|=1, 又因為|PA|=1, 所以|PM|==, 即|PM|2=2,所以(x-1)2+y2=2. 5.(2017·吉林市畢業(yè)檢測)設(shè)圓O1和圓O2是兩個定圓,動圓P與這兩個定圓都外切,則圓P的圓心軌跡可能是(  ) A.①②③⑤ B.②③④⑤ C.①②④⑤ D.①②③④ 答案 A 解析 當(dāng)兩定圓相離時,圓P的圓心軌跡為①;當(dāng)兩定圓外切時,圓P的圓心軌跡為②;當(dāng)兩定圓相交時,圓P的圓心軌跡為③;

4、當(dāng)兩定圓內(nèi)切時,圓P的圓心軌跡為⑤. 6.已知A(0,7),B(0,-7),C(12,2),以C為一個焦點作過A,B的橢圓,橢圓的另一個焦點F的軌跡方程是(  ) A.y2-=1(y≤-1) B.y2-=1 C.y2-=-1 D.x2-=1 答案 A 解析 由題意,得|AC|=13,|BC|=15,|AB|=14,又|AF|+|AC|=|BF|+|BC|,∴|AF|-|BF|=|BC|-|AC|=2.故點F的軌跡是以A,B為焦點,實軸長為2的雙曲線下支.∵雙曲線中c=7,a=1,∴b2=48,∴軌跡方程為y2-=1(y≤-1). 7.△ABC的頂點為A(-5,0)、B(5,

5、0),△ABC的內(nèi)切圓圓心在直線x=3上,則頂點C的軌跡方程是(  ) A.-=1 B.-=1 C.-=1(x>3) D.-=1(x>4) 答案 C 解析 設(shè)△ABC的內(nèi)切圓與x軸相切于D點,則D(3,0).由于AC、BC都為圓的切線. 故有|CA|-|CB|=|AD|-|BD|=8-2=6. 由雙曲線定義知所求軌跡方程為-=1(x>3). 故選C. 8.(2017·寧波十校聯(lián)考)在直角坐標平面中,△ABC的兩個頂點A、B的坐標分別為A(-1,0),B(1,0),平面內(nèi)兩點G,M同時滿足下列條件:①++=0,②||=||=||,③∥.則△ABC的頂點C的軌跡方程為(  

6、) A.+y2=1(y≠0) B.-y2=1(y≠0) C.x2+=1(y≠0) D.x2-=1(y≠0) 答案 C 解析 根據(jù)題意,G為△ABC的重心,設(shè)C(x,y),則G(,),而M為△ABC的外心,∴M在AB的中垂線上,即y軸上,由∥,得M(0,),根據(jù)||=||,得1+()2=x2+(y-)2,即x2+=1,又C點不在x軸上,∴y≠0,故選C. 9.如圖,在平面直角坐標系xOy中,圓x2+y2=r2(r>0)內(nèi)切于正方形ABCD,任取圓上一點P,若=a+b(a,b∈R),若M(a,b),則動點M所形成的軌跡曲線的長度為(  ) A.π B.π C.π D.2π

7、 答案 B 解析 設(shè)P(x,y),則x2+y2=r2,A(r,r),B(-r,r).由=a+b,得代入x2+y2=r2,得(a-b)2+(a+b)2=1,即a2+b2=,故動點M所形成的軌跡曲線的長度為π. 10.已知拋物線y2=nx(n<0)與雙曲線-=1有一個相同的焦點,則動點(m,n)的軌跡方程是________. 答案 n2=16(m+8)(n<0) 解析 拋物線的焦點為(,0),在雙曲線中,8+m=c2=()2,n<0,即n2=16(m+8)(n<0). 11.長為3的線段AB的端點A,B分別在x,y軸上移動,動點C(x,y)滿足:=2,則動點C的軌跡方程為_______

8、_________. 答案 x2+y2=1 解析 設(shè)A(a,0),B(0,b),則a2+b2=9.又C(x,y),則由=2,得(x-a,y)=2(-x,b-y). 即即代入a2+b2=9,并整理,得x2+y2=1. 12.若過拋物線y2=4x的焦點作直線與其交于M,N兩點,作平行四邊形MONP,則點P的軌跡方程為________. 答案 y2=4(x-2) 解析 設(shè)直線方程為y=k(x-1),點M(x1,y1),N(x2,y2),P(x,y),由=,得(x1,y1)=(x-x2,y-y2). 得x1+x2=x,y1+y2=y(tǒng). 由聯(lián)立得x=x1+x2=. y=y(tǒng)1+y2=,消

9、去參數(shù)k,得y2=4(x-2). 13.如圖所示,直角三角形ABC的頂點坐標A(-2,0),直角頂點B(0,-2),頂點C在x軸上,點P為線段OA的中點. (1)求BC邊所在直線方程; (2)M為直角三角形ABC外接圓的圓心,求圓M的方程; (3)若動圓N過點P且與圓M內(nèi)切,求動圓N的圓心N的軌跡方程. 答案 (1)y=x-2 (2)(x-1)2+y2=9 (3)x2+y2=1 解析 (1)∵kAB=-,AB⊥BC, ∴kCB=.∴BC:y=x-2. (2)在上式中,令y=0,得C(4,0).∴圓心M(1,0). 又∵|AM|=3,∴外接圓的方程為(x-1)2+y2=9.

10、 (3)∵P(-1,0),M(1,0),∵圓N過點P(-1,0), ∴PN是該圓的半徑.又∵動圓N與圓M內(nèi)切, ∴|MN|=3-|PN|,即|MN|+|PN|=3. ∴點N的軌跡是以M,P為焦點,長軸長為3的橢圓. ∴a=,c=1,b==. ∴軌跡方程為x2+y2=1. 14.已知動點P(x,y)與兩定點M(-1,0),N(1,0)連線的斜率之積等于常數(shù)λ(λ≠0). (1)求動點P的軌跡C的方程; (2)討論軌跡C的形狀. 答案 (1)x2-=1(λ≠0,x≠±1) (2)略 解析 (1)由題設(shè)知直線PM與PN的斜率存在且均不為零,所以kPM·kPN=·=λ. 整理,

11、得x2-=1(λ≠0,x≠±1). (2)①當(dāng)λ>0時,軌跡C為中心在原點,焦點在x軸上的雙曲線(除去頂點); ②當(dāng)-1<λ<0時,軌跡C為中心在原點,焦點在x軸上的橢圓(除去長軸兩個端點); ③當(dāng)λ=-1時,軌跡C為以原點為圓心,1為半徑的圓除去點(-1,0),(1,0); ④當(dāng)λ<-1時,軌跡C為中心在原點,焦點在y軸上的橢圓(除去短軸的兩個端點). 15.已知點A(-4,4),B(4,4),直線AM與BM相交于點M,且直線AM的斜率與直線BM的斜率之差為-2,點M的軌跡為曲線C. (1)求曲線C的軌跡方程; (2)Q為直線y=-1上的動點,過Q作曲線C的切線,切點分別為D,

12、E,求△QDE的面積S的最小值. 答案 (1)x2=4y(x≠±4) (2)4 解析 (1)設(shè)M(x,y),則kAM=,kBM=. ∵直線AM的斜率與直線BM的斜率的差為-2, ∴-=-2,∴x2=4y(x≠±4). (2)設(shè)Q(m,-1).∵切線斜率存在且不為0,故可設(shè)一條切線的斜率為k,則切線方程為y+1=k(x-m). 聯(lián)立得方程組得x2-4kx+4(km+1)=0. 由相切得Δ=0,將k2-km-1=0代入,得x2-4kx+4k2=0, 即x=2k,從而得到切點的坐標為(2k,k2). 在關(guān)于k的方程k2-km-1=0中,Δ>0, ∴方程k2-km-1=0有兩個不相

13、等的實數(shù)根,分別為k1,k2, 則故QD⊥QE,S=|QD||QE|. 記切點(2k,k2)到Q(m,-1)的距離為d, 則d2=(2k-m)2+(k2+1)2=4(k2-km)+m2+k2m2+4km+4, 故|QD|=, |QE|=, S=(4+m2) =(4+m2)≥4, 即當(dāng)m=0,也就是Q(0,-1)時面積的最小值為4. 16.已知橢圓E:+=1(a>b>0)的離心率為,過左焦點傾斜角為45°的直線被橢圓截得的弦長為. (1)求橢圓E的方程; (2)若動直線l與橢圓E有且只有一個公共點,過點M(1,0)作l的垂線,垂足為Q,求點Q的軌跡方程. 答案 (1)+y

14、2=1 (2)x2+y2=2 解析 (1)因為橢圓E的離心率為,所以=.解得a2=2b2,故橢圓E的方程可設(shè)為+=1,則橢圓E的左焦點坐標為(-b,0),過左焦點傾斜角為45°的直線方程為l′:y=x+b. 設(shè)直線l′與橢圓E的交點為A,B, 由消去y,得3x2+4bx=0,解得x1=0,x2=-. 因為|AB|=|x1-x2|==,解得b=1. ∴a2=2,∴橢圓E的方程為+y2=1. (2)①當(dāng)切線l的斜率存在且不為0時,設(shè)l的方程為y=kx+m,聯(lián)立直線l和橢圓E的方程,得 消去y并整理,得(2k2+1)x2+4kmx+2m2-2=0. 因為直線l和橢圓E有且僅有一個交點

15、, 所以Δ=16k2m2-4(2k2+1)(2m2-2)=0. 化簡并整理,得m2=2k2+1. 因為直線MQ與l垂直,所以直線MQ的方程為y=-(x-1). 聯(lián)立得方程組解得 ∴x2+y2====, 把m2=2k2+1代入上式得x2+y2=2.(*) ②當(dāng)切線l的斜率為0時,此時Q(1,1)或(1,-1),符合(*)式. ③當(dāng)切線l的斜率不存在時,此時Q(,0)或(-,0),符合(*)式. 綜上所述,點Q的軌跡方程為x2+y2=2. 1.(2018·河南洛陽二模)已知動圓M過定點E(2,0),且在y軸上截得的弦PQ的長為4.則動圓圓心M的軌跡C的方程是________

16、. 答案 y2=4x 解析 設(shè)M(x,y),PQ的中點為N,連MN,則|PN|=2,MN⊥PQ, ∴|MN|2+|PN|2=|PM|2. 又|PM|=|EM|,∴|MN|2+|PN|2=|EM|2, ∴x2+4=(x-2)2+y2,整理得y2=4x. ∴動圓圓心M的軌跡C的方程為y2=4x. 2.已知直線l與平面α平行,P是直線l上一定點,平面α內(nèi)的動點B滿足PB與直線l成30°角,那么B點軌跡是(  ) A.兩條直線 B.橢圓 C.雙曲線 D.拋物線 答案 C 解析 P是直線l上的定點,平面α與直線l平行,平面α內(nèi)的動點B滿足PB與直線l成30°角,因為空間中過

17、P與l成30°角的直線構(gòu)成兩個相對頂點的圓錐,α即為平行于圓錐軸的平面,點B的軌跡可理解為α與圓錐側(cè)面的交線,所以點B的軌跡為雙曲線,故選C. 3.(2018·安徽安慶二模)已知拋物線x2=2py(p>0),F(xiàn)為其焦點,過點F的直線l交拋物線于A,B兩點,過點B作x軸的垂線,交直線OA于點C,如圖所示.求點C的軌跡M的方程. 答案 y=- 解析 依題意可得,直線l的斜率存在,故設(shè)其方程為y=kx+,又設(shè)A(x1,y1),B(x2,y2),C(x,y), 由?x2-2pkx-p2=0?x1·x2=-p2. 易知直線OA:y=x=x,直線BC:x=x2, 由得y==-, 即點C的

18、軌跡M的方程為y=-. 4.(2014·課標全國Ⅰ,文)已知點P(2,2),圓C:x2+y2-8y=0,過點P的動直線l與圓C交于A,B兩點,線段AB的中點為M,O為坐標原點. (1)求M的軌跡方程; (2)當(dāng)|OP|=|OM|時,求l的方程及△POM的面積. 答案 (1)(x-1)2+(y-3)2=2 (2)x+3y-8=0,S△POM= 解析 (1)圓C的方程可化為x2+(y-4)2=16,所以圓心為C(0,4),半徑為4. 設(shè)M(x,y),則=(x,y-4),=(2-x,2-y).由題設(shè)知·=0,故x(2-x)+(y-4)(2-y)=0,即(x-1)2+(y-3)2=2. 由于點P在圓C的內(nèi)部,所以M的軌跡方程是(x-1)2+(y-3)2=2. (2)由(1)可知M的軌跡是以點N(1,3)為圓心,為半徑的圓. 由于|OP|=|OM|,故O在線段PM的垂直平分線上. 又P在圓N上,從而ON⊥PM. 因為ON的斜率為3,所以l的斜率為-. 故l的方程為y=-x+,即x+3y-8=0. 又|OM|=|OP|=2,O到l的距離為,|PM|=,所以△POM的面積為.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!