《2022年高考數(shù)學(xué) 6年高考母題精解精析 專(zhuān)題9 直線(xiàn)和圓01 理》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2022年高考數(shù)學(xué) 6年高考母題精解精析 專(zhuān)題9 直線(xiàn)和圓01 理(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué) 6年高考母題精解精析 專(zhuān)題9 直線(xiàn)和圓01 理
1.【xx高考真題重慶理3】任意的實(shí)數(shù)k,直線(xiàn)與圓的位置關(guān)系一定是
(1) 相離 B.相切 C.相交但直線(xiàn)不過(guò)圓心 D.相交且直線(xiàn)過(guò)圓心
2.【xx高考真題浙江理3】設(shè)a∈R ,則“a=1”是“直線(xiàn)l1:ax+2y=0與直線(xiàn)l2 :x+(a+1)y+4=0平行 的
A 充分不必要條件 B 必要不充分條件
C 充分必要條件 D 既不充分也不必要條件
【答案】A
【解析】當(dāng)時(shí),直線(xiàn):,直線(xiàn):,則//;若//,則有,即,解之得,或,所以不能得到。故選A.
4.
2、【xx高考真題陜西理4】已知圓,過(guò)點(diǎn)的直線(xiàn),則( )
A.與相交 B. 與相切 C.與相離 D. 以上三個(gè)選項(xiàng)均有可能
5.【xx高考真題天津理8】設(shè),若直線(xiàn)與圓相切,則m+n的取值范圍是
(A) (B)
(C) (D)
【答案】D
【解析】圓心為,半徑為1.直線(xiàn)與圓相切,所以圓心到直線(xiàn)的距離滿(mǎn)足,即,設(shè),即,解得或
6.【xx高考江蘇12】(5分)在平面直角坐標(biāo)系中,圓的方程為,若直線(xiàn)上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值是 ▲ .
3、
8.【xx高考真題湖南理21】(本小題滿(mǎn)分13分)
在直角坐標(biāo)系xOy中,曲線(xiàn)C1的點(diǎn)均在C2:(x-5)2+y2=9外,且對(duì)C1上任意一點(diǎn)M,M到直線(xiàn)x=﹣2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.
(Ⅰ)求曲線(xiàn)C1的方程;
(Ⅱ)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點(diǎn),過(guò)P作圓C2的兩條切線(xiàn),分別與曲線(xiàn)C1相交于點(diǎn)A,B和C,D.證明:當(dāng)P在直線(xiàn)x=﹣4上運(yùn)動(dòng)時(shí),四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.
解法2 :由題設(shè)知,曲線(xiàn)上任意一點(diǎn)M到圓心的距離等于它到直線(xiàn)的距離,因此,曲線(xiàn)是以為焦點(diǎn),直線(xiàn)為準(zhǔn)線(xiàn)的拋物線(xiàn),故其方程為.
設(shè)過(guò)P所作的兩條切線(xiàn)的斜率分別為,則是方程①
4、的兩個(gè)實(shí)根,故
②
由得 ③
【xx年高考試題】
一、選擇題:
1.(xx年高考江西卷理科9)若曲線(xiàn):與曲線(xiàn):有四個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍是
A.(,) B.(,0)∪(0,)
c.[,] D.(,)∪(,+)
二、填空題:
1.(xx年高考安徽卷理科15)在平面直角坐標(biāo)系中,如果與都是整數(shù),就稱(chēng)點(diǎn)為整點(diǎn),下列命題中正確的是_____________(寫(xiě)出所有正確命題的編號(hào)).
①存在這樣的直線(xiàn),既不與坐標(biāo)軸平行又不經(jīng)過(guò)任何整點(diǎn)
②如果與都是無(wú)理數(shù),則直線(xiàn)不經(jīng)過(guò)任何整點(diǎn)
③直線(xiàn)經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)經(jīng)過(guò)兩個(gè)不同
5、的整點(diǎn)
④直線(xiàn)經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn)的充分必要條件是:與都是有理數(shù)
⑤存在恰經(jīng)過(guò)一個(gè)整點(diǎn)的直線(xiàn)
2.(xx年高考重慶卷理科15)設(shè)圓位于拋物線(xiàn)與直線(xiàn)所組成的封閉區(qū)域(包含邊界)內(nèi),則圓的半徑能取到的最大值為
三、解答題:
1. (xx年高考山東卷理科22)(本小題滿(mǎn)分14分)
已知?jiǎng)又本€(xiàn)與橢圓C: 交于P、Q兩不同點(diǎn),且△OPQ的面積=,其中O為坐標(biāo)原點(diǎn).
(Ⅰ)證明和均為定值;
(Ⅱ)設(shè)線(xiàn)段PQ的中點(diǎn)為M,求的最大值;
(Ⅲ)橢圓C上是否存在點(diǎn)D,E,G,使得?若存在,判斷△DEG的形狀;若不存在,請(qǐng)說(shuō)明理由.
(2)當(dāng)直線(xiàn)的斜率存在時(shí),設(shè)直線(xiàn)的方
6、程為
由題意知m,將其代入,得
,
綜上所述,結(jié)論成立。
(II)解法一:
(1)當(dāng)直線(xiàn)的斜率存在時(shí),
由(I)知
因此
(2)當(dāng)直線(xiàn)的斜率存在時(shí),由(I)知
解法二:
由(I)得
2. (xx年高考廣東卷理科19)設(shè)圓C與兩圓中的一個(gè)內(nèi)切,另一個(gè)外切.
(1)求C的圓心軌跡L的方程.
(2)已知點(diǎn)且P為L(zhǎng)上動(dòng)點(diǎn),求的最大值及此時(shí)點(diǎn)P的坐標(biāo).
【解析】(1)解:設(shè)C的圓心的坐標(biāo)為,由題設(shè)條件知
化簡(jiǎn)得L的方程為
(2)解:過(guò)M,F(xiàn)的直線(xiàn)方程為,將其代入L的方程得
解得
3.(xx年高考福建卷理科17)(
7、本小題滿(mǎn)分13分)
已知直線(xiàn)l:y=x+m,m∈R。
(I)若以點(diǎn)M(2,0)為圓心的圓與直線(xiàn)l相切與點(diǎn)P,且點(diǎn)P在y軸上,求該圓的方程;
(II)若直線(xiàn)l關(guān)于x軸對(duì)稱(chēng)的直線(xiàn)為,問(wèn)直線(xiàn)與拋物線(xiàn)C:x2=4y是否相切?說(shuō)明理由。
(1)當(dāng)時(shí),直線(xiàn)與拋物線(xiàn)C相切
(2)當(dāng),那時(shí),直線(xiàn)與拋物線(xiàn)C不相切。
綜上,當(dāng)m=1時(shí),直線(xiàn)與拋物線(xiàn)C相切;
當(dāng)時(shí),直線(xiàn)與拋物線(xiàn)C不相切。
4.(xx年高考上海卷理科23)(18分)已知平面上的線(xiàn)段及點(diǎn),在上任取一點(diǎn),線(xiàn)段長(zhǎng)度的最小值稱(chēng)為點(diǎn)到線(xiàn)段的距離,記作。
(1)求點(diǎn)到線(xiàn)段的距離;
(2)設(shè)是長(zhǎng)為2的線(xiàn)段,求點(diǎn)集所表示圖形的面積;
(3)寫(xiě)出到兩條線(xiàn)段距離相等的點(diǎn)的集合,其中
,
是下列三組點(diǎn)中的一組。對(duì)于下列三組點(diǎn)只需選做一種,滿(mǎn)分分別是①2分,②
6分,③8分;若選擇了多于一種的情形,則按照序號(hào)較小的解答計(jì)分。
① 。
② 。
③ 。
解:⑴ 設(shè)是線(xiàn)段上一點(diǎn),則
,當(dāng)時(shí),。