2022年高考數(shù)學二輪復習教案:第一部分 專題一 第五講 導數(shù)的應用 第六講 導數(shù)的應用(二)

上傳人:xt****7 文檔編號:106894462 上傳時間:2022-06-14 格式:DOC 頁數(shù):7 大?。?37KB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學二輪復習教案:第一部分 專題一 第五講 導數(shù)的應用 第六講 導數(shù)的應用(二)_第1頁
第1頁 / 共7頁
2022年高考數(shù)學二輪復習教案:第一部分 專題一 第五講 導數(shù)的應用 第六講 導數(shù)的應用(二)_第2頁
第2頁 / 共7頁
2022年高考數(shù)學二輪復習教案:第一部分 專題一 第五講 導數(shù)的應用 第六講 導數(shù)的應用(二)_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學二輪復習教案:第一部分 專題一 第五講 導數(shù)的應用 第六講 導數(shù)的應用(二)》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學二輪復習教案:第一部分 專題一 第五講 導數(shù)的應用 第六講 導數(shù)的應用(二)(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學二輪復習教案:第一部分 專題一 第五講 導數(shù)的應用 第六講 導數(shù)的應用(二) 1.(xx·高考全國卷Ⅱ)設(shè)函數(shù)f(x)=(1-x2)ex. (1)討論f(x)的單調(diào)性; (2)當x≥0時,f(x)≤ax+1,求a的取值范圍. 解析:(1)f′(x)=(1-2x-x2)ex. 令f′(x)=0得x=-1-或x=-1+. 當x∈(-∞,-1-)時,f′(x)<0; 當x∈(-1-,-1+)時,f′(x)>0; 當x∈(-1+,+∞)時,f′(x)<0. 所以f(x)在(-∞,-1-),(-1+,+∞)單調(diào)遞減, 在(-1-,-1+)單調(diào)遞增. (2)f(x)

2、=(1+x)(1-x)ex. 當a≥1時,設(shè)函數(shù)h(x)=(1-x)ex,h′(x)=-xex<0(x>0),因此h(x)在[0,+∞)單調(diào)遞減, 而h(0)=1,故h(x)≤1,所以f(x)=(x+1)h(x)≤x+1≤ax+1. 當00(x>0),所以g(x)在[0,+∞)單調(diào)遞增, 而g(0)=0,故ex≥x+1. 當0(1-x)(1+x)2,(1-x)(1+x)2-ax-1=x(1-a-x-x2),取x0=, 則x0∈(0,1),(1-x0)(1+x0)2-ax0-1=0,故f(x0)>a

3、x0+1. 當a≤0時,取x0=,則x0∈(0,1), f(x0)>(1-x0)(1+x0)2=1≥ax0+1. 綜上,a的取值范圍是[1,+∞). 2.(xx·高考全國卷Ⅱ)已知函數(shù)f(x)=(x+1)ln x-a(x-1). (1)當a=4時,求曲線y=f(x)在(1,f(1))處的切線方程; (2)若當x∈(1,+∞)時,f(x)>0,求a的取值范圍. 解析:(1)f(x)的定義域為(0,+∞). 當a=4時,f(x)=(x+1)ln x-4(x-1), f(1)=0,f′(x)=ln x+-3,f′(1)=-2. 故曲線y=f(x)在(1,f(1))處的切線方程為2

4、x+y-2=0. (2)當x∈(1,+∞)時,f(x)>0等價于ln x->0. 設(shè)g(x)=ln x-, 則g′(x)=-=,g(1)=0. ①當a≤2,x∈(1,+∞)時,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)單調(diào)遞增,因此g(x)>0; ②當a>2時,令g′(x)=0得x1=a-1-,x2=a-1+. 由x2>1和x1x2=1得x1<1,故當x∈(1,x2)時,g′(x)<0,g(x)在(1,x2)單調(diào)遞減,因此g(x)<0. 綜上,a的取值范圍是(-∞,2]. 導數(shù)與方程問題 [典例](xx·臨沂模擬)已知函數(shù)f(x

5、)=ex-1,g(x)=+x,其中e是自然對數(shù)的底數(shù),e=2.718 28…. (1)證明:函數(shù)h(x)=f(x)-g(x)在區(qū)間(1,2)上有零點; (2)求方程f(x)=g(x)的根的個數(shù),并說明理由. 解析:(1)證明:h(x)=f(x)-g(x)=ex-1--x, 則h(1)=e-3<0,h(2)=e2-3->0,所以函數(shù)h(x)在區(qū)間(1,2)上有零點. (2)由(1)得h(x)=ex-1--x.由g(x)=+x知,x∈[0,+∞), 而h(0)=0,則x=0為h(x)的一個零點,而h(x)在(1,2)內(nèi)有零點, 因此h(x)在[0,+∞)上至少有兩個零點. 因為h′

6、(x)=ex-x-1,記φ(x)=ex-x-1, 則φ′(x)=ex+x.當x∈(0,+∞)時,φ′(x)>0, 因此φ(x)在(0,+∞)上單調(diào)遞增, 則φ(x)在(0,+∞)內(nèi)至多只有一個零點,即h(x)在[0,+∞)內(nèi)至多有兩個零點. 所以方程f(x)=g(x)的根的個數(shù)為2. [類題通法] 數(shù)學思想在用導數(shù)研究方程根或零點問題中的應用 對于函數(shù)的零點問題,往往通過利用導數(shù)來研究函數(shù)的單調(diào)性,從而研究函數(shù)在不同區(qū)間上的函數(shù)取值,利用數(shù)形結(jié)合來求解函數(shù)的零點個數(shù)或參數(shù)的取值范圍.在求解的過程中要注意函數(shù)零點的存在性定理及分類討論思想的應用. [演練沖關(guān)] 1.(xx·江西

7、宜春中學模擬)設(shè)函數(shù)f(x)=ln x+,m∈R. (1)當m=e(e為自然對數(shù)的底數(shù))時,求f(x)的極小值; (2)討論函數(shù)g(x)=f′(x)-零點的個數(shù). 解析:(1)由題設(shè),當m=e時,f(x)=ln x+,則f′(x)=, ∴當x∈(0,e)時,f′(x)<0,f(x)在(0,e)上單調(diào)遞減, 當x∈(e,+∞)時,f′(x)>0,f(x)在(e,+∞)上單調(diào)遞增, ∴當x=e時,f(x)取得極小值f(e)=ln e+=2, ∴f(x)的極小值為2. (2)由題設(shè)g(x)=f′(x)-=--(x>0),令g(x)=0,得m=-x3+x(x>0). 設(shè)φ(x)=-x

8、3+x(x>0),則φ′(x)=-x2+1=-(x-1)(x+1), 當x∈(0,1)時,φ′(x)>0,φ(x)在(0,1)上單調(diào)遞增; 當x∈(1,+∞)時,φ′(x)<0,φ(x)在(1,+∞)上單調(diào)遞減. ∴x=1是φ(x)的唯一極值點,且是極大值點,因此x=1也是φ(x)的最大值點, ∴φ(x)的最大值為φ(1)=. ①當m>時,函數(shù)g(x)無零點; ②當m=時,函數(shù)g(x)有且只有一個零點; ③當0時,函數(shù)g(x)無零點;當m=或m≤0時,函數(shù)g(x)有且只有一個零點

9、; 當0

10、′(x)<0,φ(x)單調(diào)遞減, 當x>e-1時,φ′(x)>0,φ(x)單調(diào)遞增, ∴φ(x)的極小值為φ(e-1)=-e-1. 如圖,作出函數(shù)φ(x)的大致圖象,則要使方程xln x=有唯一的實根, 只需直線y=與曲線y=φ(x)有唯一的交點,則=-e-1或>0,解得a=-e或a>0, 故實數(shù)a的取值范圍是{a|a=-e或a>0}. 導數(shù)、函數(shù)、不等式的交匯問題 函數(shù)、導數(shù)、不等式的交匯命題是課標卷命題的熱點,也是每年高考必考內(nèi)容,常考的角度主要有不等式恒成立問題及證明不等式,綜合性能有較大的區(qū)分度. 交匯點一 不等式恒成立問題 [典例1](xx·洛陽模擬)設(shè)函數(shù)f(

11、x)=x3-x2+(a+1)x+1(其中常數(shù)a∈R). (1)已知函數(shù)f(x)在x=1處取得極值,求a的值; (2)已知不等式f′(x)>x2-x-a+1對任意a∈(0,+∞)都成立,求x的取值范圍. 解析:(1)因為f(x)=x3-x2+(a+1)x+1,所以f′(x)=ax2-3x+a+1, 因為函數(shù)f(x)在x=1處取得極值,所以f′(1)=a-3+a+1=0,解得a=1, 此時f′(x)=x2-3x+2=(x-1)(x-2), 當x<1或x>2時,f′(x)>0,f(x)為增函數(shù);當1

12、=1符合題意. (2)f′(x)=ax2-3x+a+1, 不等式f′(x)>x2-x-a+1對任意a∈(0,+∞)都成立, 等價于a>對任意a∈(0,+∞)都成立, 等價于≤0成立, 所以x2+2x≤0,解得-2≤x≤0. 所以x的取值范圍是[-2,0]. [類題通法] 等價轉(zhuǎn)化思想在求解不等式恒成立問題中的兩種方法 (1)分離參數(shù)法:若能夠?qū)?shù)分離,且分離后含x變量的函數(shù)關(guān)系式的最值易求,則用分離參數(shù)法. 即:①λ≥f(x)恒成立,則λ≥f(x)max. ②λ≤f(x)恒成立,則λ≤f(x)min. (2)最值轉(zhuǎn)化法:若參數(shù)不易分離或分離后含x變量的函數(shù)關(guān)系式的最值

13、不易求,則常用最值轉(zhuǎn)化法.可通過求最值建立關(guān)于參數(shù)的不等式求解.如f(x)≥0,則只需f(x)min≥0. [演練沖關(guān)] 1.(xx·南昌模擬)已知函數(shù)f(x)=e-x[x2+(1-m)x+1](e為自然對數(shù)的底數(shù),m為常數(shù)). (1)若曲線y=f(x)與x軸相切,求實數(shù)m的值; (2)若存在實數(shù)x1,x2∈[0,1]使得2f(x1)

14、 所以m的值是3或-1. (2)依題意,當x∈[0,1]時,函數(shù)f(x)max>2f(x)min, ①m≥1時,當x∈[0,1]時,f′(x)≤0,函數(shù)f(x)單調(diào)遞減, 所以f(0)>2f(1),即1>2×?m>3-; ②m≤0時,x∈[0,1]時,f′(x)≥0,函數(shù)f(x)單調(diào)遞增, 所以f(1)>2f(0),即>2?m<3-2e; ③當00, 所以f(x)min=f(m)=,f(x)max=f(0)或f(1), 記函數(shù)g(m)=,g′(m)=,當m≥0時,g′(m)≤0,g(m)單調(diào)遞減

15、, 所以m∈(0,1)時,g(m)>g(1)=, 所以2f(x)min=>>1=f(0), 2f(x)min=>>>=f(1),不存在m∈(0,1)使得f(x)max>2f(x)min, 綜上,實數(shù)m的取值范圍是(-∞,3-2e)∪. 交匯點二 證明不等式 [典例2] (xx·吉林實驗中學模擬)已知函數(shù)f(x)=(ax2-x+a)ex. (1)討論函數(shù)f(x)的單調(diào)性; (2)設(shè)g(x)=bln x-x(b>0),當a=時,若對任意x1∈(0,2),存在x2∈[1,2],使f(x1)+g(x2)≥0成立,求實數(shù)b的取值范圍. 解析:(1)f′(x)=(x+1)(ax+a-1)

16、ex. 當a=0時,f′(x)在(-∞,-1)上時,f′(x)>0,f(x)在(-∞,-1)上單調(diào)遞增; f′(x)在(-1,+∞)上時,f′(x)<0,f(x)在(-1,+∞)上單調(diào)遞減. 當a>0時,因為-1+>-1, 所以f(x)在(-∞,-1)和(-1+,+∞)上單調(diào)遞增,在(-1,-1+)上單調(diào)遞減; 當a<0時,因為-1+<-1, 所以f(x)在(-∞,-1+)和(-1,+∞)上單調(diào)遞減,在(-1+,-1)上單調(diào)遞增. (2)由(1)知當a=時,f(x)在(0,1)上單調(diào)遞減,在(1,2)上單調(diào)遞增,因此f(x)在(0,2)上的最小值為f(1)=0; 由題意知,對任

17、意x1∈(0,2),存在x2∈[1,2],使g(x2)≥-f(x1)成立, 因為[-f(x1)]max=0,所以bln x2-x2≥0,即b≥. 令h(x)=,x∈[1,2],則h′(x)=<0, 因此h(x)min=h(2)=,所以b≥. [類題通法] 構(gòu)造函數(shù)法證明不等式中常見的四種方法 (1)移項法:證明不等式f(x)>g(x)(f(x)0(f(x)-g(x)<0),進而構(gòu)造輔助函數(shù)h(x)=f(x)-g(x). (2)構(gòu)造“形似”函數(shù):對原不等式同解變形,如移項、通分、取對數(shù);把不等式轉(zhuǎn)化為左右兩邊是相同結(jié)構(gòu)的式子的結(jié)構(gòu),根

18、據(jù)“相同結(jié)構(gòu)”構(gòu)造輔助函數(shù). (3)主元法:對于(或可化為)f(x1,x2)≥A的不等式,可選x1(或x2)為主元,構(gòu)造函數(shù)f(x,x2)(或f(x1,x)). (4)放縮法:若所構(gòu)造函數(shù)最值不易求解,可將所證明不等式進行放縮,再重新構(gòu)造函數(shù). [演練沖關(guān)] 2.(xx·武漢調(diào)研)已知函數(shù)f(x)=x2+(1-a)x-aln x. (1)討論f(x)的單調(diào)性; (2)設(shè)a>0,證明:當00. 解析:(1)f(x)的定義域為(0,+∞). 由已知,得f′(x)=x+1-a-==.

19、 若a≤0,則f′(x)>0,此時f(x)在(0,+∞)上單調(diào)遞增. 若a>0,則由f′(x)=0,得x=a.當0a時,f′(x)>0. 此時f(x)在(0,a)上單調(diào)遞減,在(a,+∞)上單調(diào)遞增. (2)證明:令g(x)=f(a+x)-f(a-x),則g(x)=(a+x)2+(1-a)(a+x)-aln(a+x)-[(a-x)2+(1-a)(a-x)-aln(a-x)]=2x-aln(a+x)+aln(a-x). ∴g′(x)=2--=. 當00,從而f(x)的最小值為f(a),且f(a)<0. 不妨設(shè)02a-x1,于是>a. 由(1)知,f′()>0.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!