2018-2019版高中數(shù)學(xué) 第三講 柯西不等式與排序不等式 二 一般形式的柯西不等式學(xué)案 新人教A版選修4-5

上傳人:彩*** 文檔編號:106979131 上傳時(shí)間:2022-06-14 格式:DOCX 頁數(shù):10 大?。?66.23KB
收藏 版權(quán)申訴 舉報(bào) 下載
2018-2019版高中數(shù)學(xué) 第三講 柯西不等式與排序不等式 二 一般形式的柯西不等式學(xué)案 新人教A版選修4-5_第1頁
第1頁 / 共10頁
2018-2019版高中數(shù)學(xué) 第三講 柯西不等式與排序不等式 二 一般形式的柯西不等式學(xué)案 新人教A版選修4-5_第2頁
第2頁 / 共10頁
2018-2019版高中數(shù)學(xué) 第三講 柯西不等式與排序不等式 二 一般形式的柯西不等式學(xué)案 新人教A版選修4-5_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2018-2019版高中數(shù)學(xué) 第三講 柯西不等式與排序不等式 二 一般形式的柯西不等式學(xué)案 新人教A版選修4-5》由會員分享,可在線閱讀,更多相關(guān)《2018-2019版高中數(shù)學(xué) 第三講 柯西不等式與排序不等式 二 一般形式的柯西不等式學(xué)案 新人教A版選修4-5(10頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、二 一般形式的柯西不等式 學(xué)習(xí)目標(biāo) 1.理解并掌握三維形式的柯西不等式.2.了解柯西不等式的一般形式,體會從特殊到一般的思維過程.3.會用三維形式及一般形式的柯西不等式解決一些特殊形式的問題. 知識點(diǎn)一 三維形式的柯西不等式 思考1 類比平面向量,在空間向量中,如何用|α||β|≥|α·β|,推導(dǎo)三維形式的柯西不等式? 答案 設(shè)α=(a1,a2,a3),β=(b1,b2,b3), 則|α|=,|β|=. ∵|α||β|≥|α·β|, ∴·≥|a1b1+a2b2+a3b3|, ∴(a+a+a)(b+b+b)≥(a1b1+a2b2+a3b3)2. 思考2 三維形式的柯西不等式

2、中,等號成立的條件是什么? 答案 當(dāng)且僅當(dāng)α,β共線時(shí),即β=0或存在實(shí)數(shù)k,使a1=kb1,a2=kb2,a3=kb3時(shí),等號成立. 梳理 三維形式的柯西不等式 設(shè)a1,a2,a3,b1,b2,b3是實(shí)數(shù),則(a+a+a)(b+b+b)≥(a1b1+a2b2+a3b3)2,當(dāng)且僅當(dāng)b1=b2=b3=0或存在一個(gè)數(shù)k,使得ai=kbi(i=1,2,3)時(shí)等號成立. 知識點(diǎn)二 一般形式的柯西不等式 1.一般形式的柯西不等式 設(shè)a1,a2,a3,…,an,b1,b2,b3,…,bn是實(shí)數(shù),則(a+a+…+a)(b+b+…+b)≥(a1b1+a2b2+…+anbn)2. 2.柯西不等式

3、等號成立的條件 當(dāng)且僅當(dāng)bi=0(i=1,2,…,n)或存在一個(gè)數(shù)k,使得 ai=kbi(i=1,2,…,n)時(shí)等號成立. 類型一 利用柯西不等式證明不等式 例1 設(shè)a,b,c為正數(shù),且不全相等. 求證:++>. 證明 構(gòu)造兩組數(shù),,; ,,,則由柯西不等式得 (a+b+b+c+c+a)≥(1+1+1)2, ① 即2(a+b+c)≥9, 于是++≥. 由柯西不等式知, ①中有等號成立?==?a+b=b+c=c+a?a=b=c. 因?yàn)轭}設(shè)中a,b,c不全相等,故①中等號不成立, 于是++>. 反思與感悟 有些問題一般不具備直接應(yīng)用柯西不等式的條件

4、,可以通過: (1)構(gòu)造符合柯西不等式的形式及條件,可以巧拆常數(shù). (2)構(gòu)造符合柯西不等式的形式及條件,可以重新安排各項(xiàng)的次序. (3)構(gòu)造符合柯西不等式的形式及條件,可以改變式子的結(jié)構(gòu),從而達(dá)到使用柯西不等式的目的. (4)構(gòu)造符合柯西不等式的形式及條件,可以添項(xiàng). 跟蹤訓(xùn)練1 已知a,b,c∈R+,求證·≥9. 證明 由柯西不等式知, 左邊=× ≥2 =(1+1+1)2=9, ∴原不等式成立. 例2 設(shè)a1,a2,…,an為正整數(shù),求證:++…+≥a1+a2+…+an. 證明 由柯西不等式,得 (a2+a3+…+a1) ≥2 =(a1+a2+…+an)2

5、, 故++…+≥a1+a2+…+an. 反思與感悟 一般形式的柯西不等式往往看著比較復(fù)雜,這時(shí)一定要注意式子的結(jié)構(gòu)特征,一邊一定要出現(xiàn)“方、和、積”的形式. 跟蹤訓(xùn)練2 已知a1,a2,…,an∈R+,且a1+a2+…+an=1,求證:++…++≥. 證明 ∵×2 =[(a1+a2)+(a2+a3)+…+(an+a1)] ≥2 =(a1+a2+…+an)2=1, ∴++…+≥. 類型二 利用柯西不等式求函數(shù)的最值 例3 (1)若實(shí)數(shù)x,y,z滿足x+2y+3z=a(a為常數(shù)),則x2+y2+z2的最小值為________. (2)已知0<x<1,0<y<1,則函數(shù)f(x)

6、=+的最小值是________. 答案 (1) (2) 解析 (1)∵(12+22+32)(x2+y2+z2)≥(x+2y+3z)2=a2,當(dāng)且僅當(dāng)==時(shí)取等號,即14(x2+y2+z2)≥a2, ∴x2+y2+z2≥,即x2+y2+z2的最小值為. (2)+≥=, 故f(x)的最小值為. 反思與感悟 利用柯西不等式求最值時(shí),關(guān)鍵是對原目標(biāo)函數(shù)進(jìn)行配湊,以保證出現(xiàn)常數(shù)結(jié)果.同時(shí),要注意等號成立的條件. 跟蹤訓(xùn)練3 已知a>0,b>0,c>0,函數(shù)f(x)=|x+a|+|x-b|+c的最小值為4. (1)求a+b+c的值; (2)求a2+b2+c2的最小值. 解 (1)因?yàn)閒

7、(x)=|x+a|+|x-b|+c≥|(x+a)-(x-b)|+c=|a+b|+c, 當(dāng)且僅當(dāng)-a≤x≤b時(shí),等號成立. 又a>0,b>0, 所以|a+b|=a+b, 所以f(x)的最小值為a+b+c, 又已知f(x)的最小值為4,所以a+b+c=4. (2)由(1)知a+b+c=4, 由柯西不等式得 (4+9+1) ≥2 =(a+b+c)2=16, 即a2+b2+c2≥, 當(dāng)且僅當(dāng)==, 即a=,b=,c=時(shí)等號成立, 故a2+b2+c2的最小值為. 1.已知x,y,z∈R+且x+y+z=2,則+2+的最大值為(  ) A.2B.2C.4D.5 答案 C

8、 解析 ∵(+2+)2=(1·+2·+·)2≤[12+22+()2][()2+()2+()2] =8(x+y+z)=16 (當(dāng)且僅當(dāng)x=y(tǒng)=z=時(shí)取等號), ∴+2+≤4. 2.若a,b,c∈R+,且++=1,則a+2b+3c的最小值為(  ) A.9B.3C.D.6 答案 A 解析 由柯西不等式得a+2b+3c=(a+2b+3c)·≥(1+1+1)2=9, ∴a+2b+3c的最小值為9. 3.設(shè)a,b,c,d均為正實(shí)數(shù),則(a+b+c+d)的最小值為________. 答案 16 解析 (a+b+c+d) =[()2+()2+()2+()2]· ≥2 =(1+1

9、+1+1)2=42=16, 當(dāng)且僅當(dāng)a=b=c=d時(shí)取等號. 4.已知正數(shù)x,y,z滿足x+y+z=1,求證:++≥. 證明 因?yàn)閤>0,y>0,z>0,所以由柯西不等式得[()2+()2+()2]·≥(x+y+z)2,當(dāng)且僅當(dāng)==,即x=y(tǒng)=z=時(shí),等號成立, 所以++≥=. 1.柯西不等式的一般結(jié)構(gòu)為(a+a+…+a)(b+b+…+b)≥(a1b1+a2b2+…+anbn)2,在利用柯西不等式證明不等式時(shí)關(guān)鍵是正確構(gòu)造左邊的兩個(gè)數(shù)組,從而利用題目的條件正確解題. 2.要求ax+by+z的最大值,利用柯西不等式(ax+by+z)2≤(a2+b2+12)(x2+y2+z2)的形

10、式,再結(jié)合已知條件進(jìn)行配湊,是常見的變形技巧.對于許多不等式問題,用柯西不等式來解往往是簡明的,正確理解柯西不等式,掌握它的結(jié)構(gòu)特點(diǎn),就能更靈活地應(yīng)用它. 一、選擇題 1.已知a+a+…+a=1,x+x+…+x=1,則a1x1+a2x2+…+anxn的最大值是(  ) A.1B.2C.3D.4 答案 A 解析 (a1x1+a2x2+…+anxn)2≤(a+a+…+a)·(x+x+…+x)=1×1=1, 當(dāng)且僅當(dāng)==…==1時(shí)取等號. ∴a1x1+a2x2+…+anxn的最大值是1. 2.已知a2+b2+c2+d2=5,則ab+bc+cd+ad的最小值為(  ) A.5 B

11、.-5 C.25 D.-25 答案 B 解析 (ab+bc+cd+da)2≤(a2+b2+c2+d2)·(b2+c2+d2+a2)=25, 當(dāng)且僅當(dāng)a=b=c=d=±時(shí),等號成立. ∴ab+bc+cd+ad的最小值為-5. 3.設(shè)a,b,c,x,y,z是正數(shù),且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,則等于(  ) A.B.C.D. 答案 C 解析 由柯西不等式,得(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2=400, 當(dāng)且僅當(dāng)===時(shí)取等號, 因此有=. 4.已知a,b,c>0,且a+b+c=1,則++的最大值為( 

12、 ) A.3 B.3 C.18 D.9 答案 B 解析 由柯西不等式,得(++)2 ≤(1+1+1)(3a+1+3b+1+3c+1) =3[3(a+b+c)+3]. ∵a+b+c=1, ∴(++)2≤3×6=18, ∴++≤3, 當(dāng)且僅當(dāng)a=b=c=時(shí)等號成立. 5.設(shè)a,b,c>0,且a+b+c=1,則++的最大值是(  ) A.1 B. C.3 D.9 答案 B 6.已知x,y是實(shí)數(shù),則x2+y2+(1-x-y)2的最小值是(  ) A.B.C.6D.3 答案 B 解析 ∵(12+12+12)[x2+y2+(1-x-y)2] ≥[x+y+(1-x-

13、y)]2=1, ∴x2+y2+(1-x-y)2≥, 當(dāng)且僅當(dāng)x=y(tǒng)=時(shí)等號成立. 二、填空題 7.設(shè)a,b,c∈R+,若(a+b+c)≥25恒成立,則正數(shù)k的最小值是________. 答案 9 解析 因?yàn)?a+b+c)≥(1+1+)2=(2+)2,當(dāng)且僅當(dāng)a=b=時(shí),等號成立,所以(a+b+c)·的最小值是(2+)2.由(a+b+c)·≥25恒成立,得(2+)2≥25.又k>0,所以k≥9,所以正數(shù)k的最小值是9. 8.設(shè)a,b,c為正數(shù),則(a+b+c)的最小值是________. 答案 121 解析 (a+b+c) =[()2+()2+()2] ≥2 =(2+3+

14、6)2=121. 當(dāng)且僅當(dāng)===k(k為正實(shí)數(shù))時(shí),等號成立. 9.已知a,b,c∈R+且a+b+c=6,則++的最大值為________. 答案 4 解析 由柯西不等式,得(++)2 =(1×+1×+1×)2 ≤(12+12+12)(2a+2b+1+2c+3) =3(2×6+4)=48. 當(dāng)且僅當(dāng)==, 即2a=2b+1=2c+3時(shí)等號成立. 又a+b+c=6, ∴當(dāng)a=,b=,c=時(shí), ++取得最大值4. 10.設(shè)x,y,z∈R,2x+2y+z+8=0,則(x-1)2+(y+2)2+(z-3)2的最小值為________. 答案 9 解析 (22+22+12)

15、[(x-1)2+(y+2)2+(z-3)2] ≥[2(x-1)+2(y+2)+(z-3)]2 =(2x+2y+z-1)2=81, ∴(x-1)2+(y+2)2+(z-3)2≥9. 當(dāng)且僅當(dāng)==時(shí),取等號. 三、解答題 11.已知定義在R上的函數(shù)f(x)=|x+1|+|x-2|的最小值為a,又正數(shù)p,q,r滿足p+q+r=a,求證:p2+q2+r2≥3. 證明 因?yàn)閒(x)=|x+1|+|x-2|≥|(x+1)-(x-2)|=3, 即函數(shù)f(x)=|x+1|+|x-2|的最小值為a=3, 所以p+q+r=3. 由柯西不等式得 (p2+q2+r2)(1+1+1)≥(p+q+r

16、)2=9, 于是p2+q2+r2≥3. 12.設(shè)a1>a2>…>an>an+1,求證:++…++>0. 證明 為了運(yùn)用柯西不等式,我們將a1-an+1寫成a1-an+1=(a1-a2)+(a2-a3)+…+(an-an+1),于是 [(a1-a2)+(a2-a3)+…+(an-an+1)]· ≥n2>1. 即(a1-an+1)·>1, 所以++…+>, 故++…++>0. 四、探究與拓展 13.邊長為a,b,c的三角形ABC,其面積為,外接圓半徑為1,若s=++,t=++,則s與t的大小關(guān)系是________. 答案 s<t 解析 由已知得absinC=,=2R=2,

17、 所以abc=1, 所以++=ab+bc+ca, 由柯西不等式得 (ab+bc+ca)≥(++)2, 所以2≥(++)2, 即++≥++. 當(dāng)且僅當(dāng)a=b=c=1時(shí)等號成立. 又當(dāng)?shù)忍柍闪r(shí),面積S=≠, 故等號不成立. 故s<t. 14.已知x,y,z∈R+,且x+y+z=1. (1)若2x2+3y2+6z2=1,則x,y,z的值分別為__________; (2)若2x2+3y2+tz2≥1恒成立,則正數(shù)t的取值范圍為__________________. 答案 (1),, (2)[6,+∞) 解析 (1)∵(2x2+3y2+6z2)≥(x+y+z)2=1,當(dāng)且僅當(dāng)==時(shí),等號成立, ∴2x=3y=6z.又∵x+y+z=1, ∴x=,y=,z=. (2)∵(2x2+3y2+tz2)·≥(x+y+z)2=1, 當(dāng)且僅當(dāng)==時(shí),等號成立, ∴(2x2+3y2+tz2)min=. ∵2x2+3y2+tz2≥1恒成立, ∴≥1. 又t>0,∴t≥6. 10

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!