高中數(shù)學(xué)《空間中的垂直關(guān)系》同步練習(xí)2 新人教B版必修2

上傳人:艷*** 文檔編號(hào):111598278 上傳時(shí)間:2022-06-21 格式:DOC 頁(yè)數(shù):10 大?。?78KB
收藏 版權(quán)申訴 舉報(bào) 下載
高中數(shù)學(xué)《空間中的垂直關(guān)系》同步練習(xí)2 新人教B版必修2_第1頁(yè)
第1頁(yè) / 共10頁(yè)
高中數(shù)學(xué)《空間中的垂直關(guān)系》同步練習(xí)2 新人教B版必修2_第2頁(yè)
第2頁(yè) / 共10頁(yè)
高中數(shù)學(xué)《空間中的垂直關(guān)系》同步練習(xí)2 新人教B版必修2_第3頁(yè)
第3頁(yè) / 共10頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué)《空間中的垂直關(guān)系》同步練習(xí)2 新人教B版必修2》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)《空間中的垂直關(guān)系》同步練習(xí)2 新人教B版必修2(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、《空間中的垂直關(guān)系》專(zhuān)題訓(xùn)練 1.如圖1所示,已知正方體ABCD—A1B1C1D1中,E、F、G、H、L、M、N分別為A1D1,A1B1,BC,CD,DA,DE,CL的中點(diǎn),求證:EF⊥GF。 A B C D E A1 B1 C1 O F 2.如圖,在直三棱柱ABC-A1B1C1中,AB=BC,D、E分別為BB1、AC1的中點(diǎn),證明:ED為異面直線BB1與AC1的公垂線。 3.(1)如圖,ABCD—A1B1C1D1是正四棱柱,求證:BD⊥平面ACC1A1。 (2)如圖,在五面體ABCDEF中,點(diǎn)O是矩形ABCD的對(duì)角線的交點(diǎn), 面CDE 是等

2、邊三角形,棱。 (I)證明平面; (II)設(shè)證明平面。 4.如圖,直三棱柱ABC—A1B1C1 中,AC =BC =1,∠ACB =90°,AA1 =,D 是 A1B1 中點(diǎn).(1)求證C1D ⊥平面A1B ;(2)當(dāng)點(diǎn)F 在BB1 上什么位置時(shí),會(huì)使 得AB1 ⊥平面C1DF ?并證明你的結(jié)論。 5.如圖,△ABC 為正三角形,EC ⊥平面ABC ,BD ∥CE ,CE =CA =2 BD ,M 是EA 的中點(diǎn),求證:(1)DE =DA ;(2)平面BDM ⊥平面ECA ;(3)平面DEA ⊥平面ECA。 6.如圖所示,正四棱柱ABCD—A1B1C1D1中,底面邊長(zhǎng)為2,側(cè)

3、棱長(zhǎng)為4.E,F(xiàn)分別為棱AB,BC的中點(diǎn),EF∩BD=G。 (Ⅰ)求證:平面B1EF⊥平面BDD1B1; (Ⅱ)求點(diǎn)D1到平面B1EF的距離d; (Ⅲ)求三棱錐B1—EFD1的體積V。 7.(1)如圖,正方形所在平面,過(guò)作與垂直的平面分別交、、于、K、,求證:、分別是點(diǎn)在直線和上的射影. (2)如圖,在棱長(zhǎng)為1的正方體中,是側(cè)棱上的一點(diǎn),。 (Ⅰ)試確定,使直線與平面所成角的正切值為; (Ⅱ)在線段上是否存在一個(gè)定點(diǎn)Q,使得對(duì)任意的,D1Q在平面上的射影垂直于,并證明你的結(jié)論。 8.如圖1所示,已知A1

4、B1C1—ABC是正三棱柱,D是AC的中點(diǎn)。 (1)證明AB1∥DBC1; (2)假設(shè)AB1⊥BC1,BC=2。 求線段AB1在側(cè)面B1BCC1上的射影長(zhǎng)。 9.已知是邊長(zhǎng)為的正三角形所在平面外一點(diǎn), ,求異面直線與的距離。 A B C D E F G H 10.如圖,在空間四邊形中,、、、分別是邊、、 、的中點(diǎn),對(duì)角線且它們所成的角為。 ⑴求證:,⑵求四邊形的面積。 11.如圖(1)所示,E、F分別為正方體的面ADD1A1、面BCC1B1的中心,則四邊形BFD1E在該正方體的面上的射影可能是圖(2)的 (要求:把可能的圖的序號(hào)都填上

5、) 圖(1) 圖(2) (2)命題A:底面為正三角形,且頂點(diǎn)在底面的射影為底面中心的三棱錐是正三棱錐。 命題A的等價(jià)命題B可以是:底面為正三角形,且 的三棱錐是正三棱錐。 12.α、β是兩個(gè)不同的平面,m、n是平面α及β之外的兩條不同直線.給出四個(gè)論斷: ①m⊥n ②α⊥β ③n⊥β ④m⊥α 以其中三個(gè)論斷作為條件,余下一個(gè)論斷作為結(jié)論,寫(xiě)出你認(rèn)為正確的一個(gè)命題: 。 答案:m⊥α,n⊥β,α⊥βm⊥n或m⊥n,m⊥α,n⊥βα⊥β 《空間中的垂直關(guān)系》答案 1. 證明:如圖2,作G

6、Q⊥B1C1于Q,連接FQ,則GQ⊥平面A1B1C1D1,且Q為B1C1的中點(diǎn)。 在正方形A1B1C1D1中,由E、F、Q分別為A1D1、A1B1、B1C1的中點(diǎn)可證明EF⊥FQ, 由三垂線定理得EF⊥GF。 2.證明:設(shè)O為AC中點(diǎn),連接EO,BO,則EOC1C,又C1CB1B,所以EODB, A B C D E A1 B1 C1 O F EOBD為平行四邊形,ED∥OB。 ∵AB=BC,∴BO⊥AC, 又平面ABC⊥平面ACC1A1,BOì面ABC,故BO⊥平面ACC1A1, ∴ED⊥平面ACC1A1,BD⊥AC1,ED⊥CC1, ∴ED⊥BB1,ED為

7、異面直線AC1與BB1的公垂線。 點(diǎn)評(píng):該題考點(diǎn)多,具有一定深度,但入手不難,逐漸加深,邏輯推理增強(qiáng)。 3. 證明:(1)∵ABCD—A1B1C1D1是正四棱柱, ∴CC1⊥平面ADCD, ∴BD⊥CC1 ∵ABCD是正方形 ∴BD⊥AC 又∵AC,CC1平面ACC1A1, 且AC∩CC1=C, ∴BD⊥平面ACC1A1。 (2)證明: (I)取CD中點(diǎn)M,連結(jié)OM。 在矩形ABCD中, 又 則連結(jié)EM,于是四邊形EFOM為平行四邊形。 又平面CDE,且平面CDE, 平面CDE。 (II)連結(jié)FM。 由(I)和已知條件,在等邊中, 且

8、 因此平行四邊形EFOM為菱形,從而。 平面EOM,從而 而所以平面 4. 分析:(1)由于C1D 所在平面A1B1C1 垂直平面A1B ,只要證明C1D 垂直交線A1B1 ,由直線與平面垂直判定定理可得C1D ⊥平面A1B。 (2)由(1)得C1D ⊥AB1 ,只要過(guò)D 作AB1 的垂線,它與BB1 的交點(diǎn)即為所求的F 點(diǎn)位置。 (1)證明:如圖,∵ ABC—A1B1C1 是直三棱柱, ∴ A1C1 =B1C1 =1,且∠A1C1B1 =90°。 又 D 是A1B1 的中點(diǎn),∴ C1D ⊥A1B1 。 ∵ AA1 ⊥平面A1B1C1 ,C1D 平面A1B1C

9、1 , ∴ AA1 ⊥C1D ,∴ C1D ⊥平面AA1B1B。 (2)解:作DE ⊥AB1 交AB1 于E ,延長(zhǎng)DE 交BB1 于F ,連結(jié)C1F ,則AB1 ⊥平面C1DF ,點(diǎn)F 即為所求。 事實(shí)上,∵ C1D ⊥平面AA1BB ,AB1 平面AA1B1B , ∴ C1D ⊥AB1 .又AB1 ⊥DF ,DF C1D =D , ∴ AB1 ⊥平面C1DF 。 5. 證明:(1)如圖,取EC 中點(diǎn)F ,連結(jié)DF。 ∵ EC ⊥平面ABC ,BD ∥CE ,得DB ⊥平面ABC 。 ∴ DB ⊥AB ,EC ⊥BC。 ∵ BD ∥CE ,BD =CE

10、=FC ,則四邊形FCBD 是矩形,DF ⊥EC。 又BA =BC =DF , ∴ Rt△DEF ≌Rt△ABD ,所以DE =DA。 (2)取AC 中點(diǎn)N ,連結(jié)MN 、NB , ∵ M 是EA 的中點(diǎn), ∴ MN EC。 由BD EC ,且BD ⊥平面ABC ,可得四邊形MNBD 是矩形,于是DM ⊥MN。 ∵ DE =DA ,M 是EA 的中點(diǎn), ∴ DM ⊥EA .又EA MN =M , ∴ DM ⊥平面ECA ,而DM 平面BDM ,則平面ECA ⊥平面BDM。 (3)∵ DM ⊥平面ECA ,DM 平面DEA , ∴ 平面DEA ⊥平面ECA。

11、 6. (Ⅰ)證法一:連接AC。 ∵正四棱柱ABCD—A1B1C1D1的底面是正方形。 ∴AC⊥BD,又AC⊥D1D,故AC⊥平面BDD1B1 ∵E,F(xiàn)分別為AB,BC的中點(diǎn),故EF∥AC,∴EF⊥平面BDD1B1 ∴平面B1EF⊥平面BDD1B1。 證法二:∵BE=BF,∠EBD=∠FBD=45°,∴EF⊥BD. ∴平面B1EF⊥平面BDD1B1。 (Ⅱ)解:在對(duì)角面BDD1B1中,作D1H⊥B1G,垂足為H ∵平面B1EF⊥平面BDD1B1,且平面B1EF∩平面BDD1B1=B1G, ∴D1H⊥平面B1EF,且垂足為H,∴點(diǎn)D1到平面B1EF的距離d=D1H。 解

12、法一:在Rt△D1HB1中,D1H=D1B1·sinD1B1H, ∵D1B1=A1B1=4, sinD1B1H=sinB1GB=, ∴d=D1H=4· 解法二:∵△D1HB∽△B1BG,∴ ∴d=D1H=。 圖 解法三:如圖所示,連接D1G,則三角形D1GB1的面積等于正方形DBB1D1面積的一半.即B1G·D1H=BB12。 ∴d=。 (Ⅲ)·d·. 7. 證明:∵ 面,∴ , ∵ 為正方形,∴ , ∵ 與相交,∴ 面,面, ∴ . 由已知面,且面, ∴ , ∵ ,∴ 面,面,∴ , 即 為點(diǎn)在直線上的射影, 同理可證得為點(diǎn)在直線上的射影。

13、 (2) 解法1:(Ⅰ)連AC,設(shè)AC與BD相交于點(diǎn)O,AP與平面相交于點(diǎn),連結(jié)OG, 因?yàn)镻C∥平面,平面∩平面APC=OG, 故OG∥PC,所以O(shè)G=PC=。 又AO⊥BD,AO⊥BB1,所以AO⊥平面, 故∠AGO是AP與平面所成的角。 在Rt△AOG中,tanAGO=,即m=。 所以,當(dāng)m=時(shí),直線AP與平面所成的角的正切值為。 (Ⅱ)可以推測(cè),點(diǎn)Q應(yīng)當(dāng)是AICI的中點(diǎn)O1, 因?yàn)镈1O1⊥A1C1, 且 D1O1⊥A1A ,所以 D1O1⊥平面ACC1A1, 又AP平面ACC1A1,故 D1O1⊥AP。 那么

14、根據(jù)三垂線定理知,D1O1在平面APD1的射影與AP垂直。 8. 證明:(1)如圖2所示,∵A1B1C1—ABC是正三棱柱, ∴四邊形B1BCC1是矩形。 連結(jié)B1C,交BC1于E,則BE=EC。 連結(jié)DE,在△AB1C中,∵AD=DC, ∴DE∥AB1,又因?yàn)锳B1平面DBC1,DE平面DBC1,∴AB1∥平面DBC1。 (2)作AF⊥BC,垂足為F。因?yàn)槊鍭BC⊥面B1BCC1, ∴AF⊥平面B1BCC1。連結(jié)B1F,則B1F是AB1在平面B1BCC1內(nèi)的射影。 ∵BC1⊥AB1,∴BC1⊥B1F。 ∵四邊形B1BCC1是矩形,∴∠B1BF=∠BCC1=90°

15、,又∠FB1B=∠C1BC,∴△B1BF∽△BCC1,則==。 又F為正三角形ABC的BC邊中點(diǎn),因而B(niǎo)1B2=BF·BC=1×2=2。 于是B1F2=B1B2+BF2=3,∴B1F=,即線段AB1在平面B1BCC1內(nèi)的射影長(zhǎng)為。 9. F C A B D E F C A B D E F C A B D E 圖⑴ 圖⑵ 圖⑶ 解析:分別取、 中點(diǎn)、,連 結(jié)(圖⑴)。 連結(jié)、(圖 ⑵) ∵, 為公共邊,, ∴≌ ∴ ∵點(diǎn)為中點(diǎn) ∴ 同理:(圖⑶) 又,, ∴即為異面直線與的公垂線段 如圖⑵,在中,,,, ∴

16、∴異面直線與的距離。 點(diǎn)評(píng):求異面直線的距離,必須先找到兩條異面直線的公垂線段。 10. A B C D E F G H 解析:⑴在中,、分別是邊、的中點(diǎn),∴∥, 在中,、分別是邊、的中點(diǎn),∴∥, ∴∥且, 同理:∥且, ∵,∴, ∴四邊形為菱形,∴。 ⑵∵∥,∥, ∴(或的補(bǔ)角)即為異面直線與所成的角, 由已知得:(或), ∴四邊形的面積為:。 11. 圖(1) 圖(2) 答案:②③ 解析:∵面BFD1E⊥面ADD1A1,所以四邊形BFD1E在面ADD1A1上的射影是③,同理,在面BCC1B1上的射影也是③。 過(guò)E、F分別作DD1和CC1的垂線,可得四邊形BFD1E在面DCC1D1上的射影是②,同理在面ABB1A1,面ABCD和面A1B1C1D1上的射影也是②。 (2) 解析:要使命題B與命題A等價(jià),則只需保證頂點(diǎn)在底面上的射影S是底面正三角形的外心即可,因此,據(jù)射影定理,得側(cè)棱長(zhǎng)相等。 12. 答案:m⊥α,n⊥β,α⊥βm⊥n或m⊥n,m⊥α,n⊥βα⊥β

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!