《§55.1 對數(shù)函數(shù)的概念5.2對數(shù)函數(shù)y=log2x的圖像和性質(zhì)》由會員分享,可在線閱讀,更多相關《§55.1 對數(shù)函數(shù)的概念5.2對數(shù)函數(shù)y=log2x的圖像和性質(zhì)(28頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2021/6/3015 5 對數(shù)函數(shù)對數(shù)函數(shù)5.1 5.1 對數(shù)函數(shù)對數(shù)函數(shù)的概念的概念5.2 5.2 對數(shù)函數(shù)對數(shù)函數(shù)y=logy=log2 2x x的的圖像和性質(zhì)圖像和性質(zhì)2021/6/302細胞分裂的個數(shù)細胞分裂的個數(shù)y y和分裂次數(shù)和分裂次數(shù)x x的的函數(shù)關系可用函數(shù)關系可用 來表示來表示. .思考思考: :一個這樣的細胞經(jīng)過多少次一個這樣的細胞經(jīng)過多少次分裂分裂, ,大約可以得到大約可以得到1 1萬個細胞或萬個細胞或1010萬個細胞?分裂次數(shù)萬個細胞?分裂次數(shù)x x與細胞個與細胞個數(shù)數(shù)y y之間的函數(shù)關系又是什么呢之間的函數(shù)關系又是什么呢? ?2xy 2021/6/3031. 1.
2、掌握對數(shù)函數(shù)的概念、反函數(shù)的概念掌握對數(shù)函數(shù)的概念、反函數(shù)的概念. .(重點)(重點)2. 2. 知道對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)知道對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù). .(易混點)(易混點)3. 3. 會畫具體的對數(shù)函數(shù)的圖像會畫具體的對數(shù)函數(shù)的圖像. . (難點)(難點)2021/6/304Nab底數(shù)底數(shù) 指數(shù)指數(shù)冪冪3282log 831122bNalog底數(shù)底數(shù) 真數(shù)真數(shù) 對數(shù)對數(shù)21log12 2log.xxy這樣,y=22021/6/305 指數(shù)函數(shù)指數(shù)函數(shù) 反映了數(shù)集反映了數(shù)集 R R 與數(shù)集與數(shù)集 之間是一種一一對應關系。之間是一種一一對應關系。 在這個關系式中在這個關系式中, ,
3、 對于任意的對于任意的 ,在,在R R中都中都有唯一確定的有唯一確定的 x x 值與之對應值與之對應, ,若把若把 y y 當作自變量當作自變量, ,則則 x x 就就是是 y y 的函數(shù)的函數(shù). .把函數(shù)把函數(shù) 叫作叫作對數(shù)函數(shù)對數(shù)函數(shù). . xya (a0a1)=且y y0axlog yy(0,)+ 01(,)xyaaayxy對對于于一一般般的的指指數(shù)數(shù)函函數(shù)數(shù)中中思思考考探探究究的的兩兩個個變變量量,能能不不能能把把 當當做做自自變變量量,使使得得數(shù)數(shù):是是呢呢?1 1的的函函121201(,),.xyaaaxxxyy我我們們知知道道,指指數(shù)數(shù)函函數(shù)數(shù)對對于于 的的每每一一個個確確定定的
4、的值值,都都有有唯唯一一確確定定的的值值和和它它對對應應;并并且且時時,作作y y. .2021/6/306 習慣上,自變量用習慣上,自變量用x x表示,表示,y y表示函數(shù),所以這表示函數(shù),所以這個函數(shù)就寫成個函數(shù)就寫成aylog x(a0a1)=且axlog y=對于函數(shù)對于函數(shù) 我們把函數(shù)我們把函數(shù) 叫作叫作對數(shù)函對數(shù)函數(shù)數(shù),其中,其中x x是自變量,函數(shù)的定義域是(是自變量,函數(shù)的定義域是(0 0, ), , 叫作叫作對數(shù)函數(shù)的底數(shù)對數(shù)函數(shù)的底數(shù). .aylog x(a0,a1)=a2021/6/307特別地,我們稱以特別地,我們稱以1010為底的對數(shù)函數(shù)為底的對數(shù)函數(shù)y=lgxy=l
5、gx為為常用常用對數(shù)函數(shù);對數(shù)函數(shù);稱以無理數(shù)稱以無理數(shù)e e為底的對數(shù)函數(shù)為底的對數(shù)函數(shù)y=lnxy=lnx為為自然對數(shù)函數(shù)自然對數(shù)函數(shù). .122021/6/308形如形如logloga ax x鞏固新知鞏固新知下列函數(shù)是對數(shù)函數(shù)的是(下列函數(shù)是對數(shù)函數(shù)的是( )A.y=logA.y=log2 2(3x-2) (3x-2) B.y=logB.y=log(x-1)(x-1)x xC.y=C.y=D.y=lnxD.y=lnx213log xD D2021/6/309典例精講典例精講例例1 1:計算;:計算;(1 1)計算對數(shù)函數(shù))計算對數(shù)函數(shù) 對應于對應于x x取取1,2,41,2,4時的函時
6、的函數(shù)值;數(shù)值;(2 2)計算常用對數(shù)函數(shù))計算常用對數(shù)函數(shù)y=lgxy=lgx對應于對應于x x取取1,10,100,1,10,100,0.10.1時的函數(shù)值時的函數(shù)值. . 2logyx=2021/6/3010解:解:(1 1)當)當x=1x=1時,時,22loglog 10yx=當當x=2x=2時,時,22loglog 21yx=當當x=4x=4時,時,22loglog 42yx=(2 2)當)當x=1x=1時,時,y=lgx=lg1=0y=lgx=lg1=0當當x=10 x=10時,時,y=lgx=lg10=1y=lgx=lg10=1當當x=100 x=100時,時,y=lgx=lg1
7、00=2y=lgx=lg100=2當當x=0.1x=0.1時,時,y=lgx=lg0.1=-1y=lgx=lg0.1=-12021/6/30112aa2:(1)ylog x ;(2)ylog (4x).例 :求下列函數(shù)的定義域=-(1)x|x(1)x|x0;0;(2)x|x(2)x|x答答案案: :4.4.對數(shù)的對數(shù)的真數(shù)大真數(shù)大于于0 0!2021/6/3012(1)log (9);1(2)log;31axyxyx=-=-(1)x|x9;(1)x|x且)x|x且xx1;1;3 3: :求下列函數(shù)的定義域求下列函數(shù)的定義域: :【變式練習變式練習】2021/6/3013提升總結(jié)提升總結(jié) 對數(shù)函
8、數(shù)的定義域即使對數(shù)式有意義的對數(shù)函數(shù)的定義域即使對數(shù)式有意義的x x的取值的取值范圍范圍, ,其中需真數(shù)大于其中需真數(shù)大于0,0,底數(shù)大于底數(shù)大于0 0且不等于且不等于1 12021/6/3014思考探究思考探究2 2:指數(shù)函數(shù)指數(shù)函數(shù) 和對數(shù)函數(shù)和對數(shù)函數(shù) 有什么關系?有什么關系?xya=aylog x(a0,a1)=2021/6/3015指數(shù)函數(shù)指數(shù)函數(shù) 和對數(shù)函數(shù)和對數(shù)函數(shù) 刻畫的是同刻畫的是同一對變量一對變量x, yx, y之間的關系,所不同的是:在指數(shù)之間的關系,所不同的是:在指數(shù)函數(shù)函數(shù) 中,中,x x是自變量,是自變量,y y 是是 x x 的函數(shù),的函數(shù),其定義域是其定義域是R
9、 R,值域是,值域是 ;xya=axlog yxya(0,)在對數(shù)函數(shù)在對數(shù)函數(shù) 中,中,y y是自變量,是自變量,x x 是是 y y 的函數(shù),其定義域是的函數(shù),其定義域是 ,值域是,值域是R.R.像這樣的兩個函數(shù)叫作像這樣的兩個函數(shù)叫作互為反函數(shù)互為反函數(shù). . 0( ,)axlog y=2021/6/3016反函數(shù)反函數(shù) 指數(shù)函數(shù)指數(shù)函數(shù) 是對數(shù)函數(shù)是對數(shù)函數(shù) 的反函數(shù)的反函數(shù). . 同時同時, ,對數(shù)函數(shù)對數(shù)函數(shù) 也是指也是指數(shù)函數(shù)數(shù)函數(shù) 的反函數(shù)的反函數(shù). .xyaaylog x(a0,a1)xya=aylog x(a0,a1) 通常情況下,通常情況下,x x表示自變量,表示自變量,
10、y y表示函數(shù),所表示函數(shù),所以對數(shù)函數(shù)應該表示為以對數(shù)函數(shù)應該表示為y=logy=loga ax(ax(a0 0,a1)a1),指,指數(shù)函數(shù)表示為數(shù)函數(shù)表示為y=ay=ax x(a(a0 0,a1).a1).因此,因此,(a0,a1)(a0,a1)2021/6/3017例例3 3 寫出下列對數(shù)函數(shù)的反函數(shù):寫出下列對數(shù)函數(shù)的反函數(shù):(1 1)y=lgx (2)y=lgx (2)13ylog x解解: : (1 1)對數(shù)函數(shù))對數(shù)函數(shù)y=lgx,y=lgx,它的底數(shù)是它的底數(shù)是1010,它,它的反函數(shù)是指數(shù)函數(shù)的反函數(shù)是指數(shù)函數(shù) y=10y=10 x x(2)(2)對數(shù)函數(shù)對數(shù)函數(shù) ,它的底數(shù)
11、是,它的底數(shù)是 ,它,它的反函數(shù)是指數(shù)函數(shù)的反函數(shù)是指數(shù)函數(shù) 13logyx131( )3xy 例題精講例題精講2021/6/3018(2) (2) (1) y(1) y5 5x x 例例4 4:寫出:寫出下列指數(shù)函數(shù)的反函數(shù)下列指數(shù)函數(shù)的反函數(shù)5ylog x23logyxx2y3( )解解: :(1 1)指數(shù)函數(shù))指數(shù)函數(shù)y y5 5x x的底數(shù)是的底數(shù)是5 5,它的反函數(shù)是,它的反函數(shù)是對數(shù)函數(shù)對數(shù)函數(shù)(2 2)指數(shù)函數(shù))指數(shù)函數(shù) 的底數(shù)是的底數(shù)是 ,它的反函數(shù)是對數(shù)函數(shù)它的反函數(shù)是對數(shù)函數(shù)23xy ( )23明確明確底數(shù)底數(shù)2021/6/3019求下列函數(shù)的反函數(shù)求下列函數(shù)的反函數(shù)2.5
12、(1)ylogx=(2)ylog xp=x(3)y1.4=x(4)y( )2p=x(1)y2.5=x(2)y= p1.4(3)ylogx=2(4)ylog xp=答案:答案:【變式練習變式練習】2021/6/3020212ylog xylog x和思考探究思考探究3 3:你能用描點法畫出對數(shù)函數(shù)你能用描點法畫出對數(shù)函數(shù)的圖像嗎的圖像嗎? ?作圖步驟作圖步驟: : 列表列表, , 描點描點, , 連線連線. .2021/6/3021x x1 12 24 4y=logy=log2 2x x-2-2-1-10 01 12 2列表列表描點描點連線連線21-1-2124Oyx32114 性質(zhì):性質(zhì):(1
13、 1)定義域是)定義域是(2 2)值域是)值域是 R R(3 3)圖像過特殊點)圖像過特殊點 (1,0)(1,0)(4 4)在其定義域上是)在其定義域上是增函數(shù)增函數(shù)(0,)若把對數(shù)函數(shù)的若把對數(shù)函數(shù)的底數(shù)換成底數(shù)換成3 3,4 4,7.67.6,1010圖像圖像性質(zhì)又會是怎樣性質(zhì)又會是怎樣的?的?與上相仿與上相仿思考:思考:畫畫y=logy=log2 2x x的圖像的圖像14122021/6/3022列表列表描點描點連線連線x x1 12 24 42 21 10 0-1-1-2-212ylogx=性質(zhì):性質(zhì):(1 1)定義域是)定義域是(2 2)值域是)值域是 (3 3)圖像過特殊點)圖像過
14、特殊點 (4 4)在其定義域上是減函)在其定義域上是減函 數(shù)數(shù)21-1-2124Oyx32114(0,)若把對數(shù)函數(shù)的底數(shù)換成若把對數(shù)函數(shù)的底數(shù)換成0.30.3,0.40.4,0.680.68圖像性質(zhì)又會是怎樣的?圖像性質(zhì)又會是怎樣的?與上相仿與上相仿R(1,0)思考:思考:畫畫y=log xy=log x的圖像的圖像1214122021/6/30231.1.指數(shù)函數(shù)與對數(shù)函數(shù)的關系為指數(shù)函數(shù)與對數(shù)函數(shù)的關系為_._.2.2.函數(shù)函數(shù)y=logy=log2 2(x-2)(x-2)的定義域為的定義域為_.互為反函數(shù)互為反函數(shù)(2,)2021/6/302412(2)log=yx(3)4=xy3.3
15、.求下列函數(shù)的反函數(shù)求下列函數(shù)的反函數(shù)(1)ln=yx=xye1( )2=xy4logyx=4.4.比較下列值的大小比較下列值的大小22(1)log 3,log 1122(2)log 0.2,log 32222(1)log 3l(1)log 3l答答: : ogog案案1122(2)log 0.2log 3答案:答案:答案:答案:答案:答案:2021/6/30255.5.若若 ,則,則 的表達式為的表達式為( )A. A. B. B. C. C. D. D. D D2021/6/30261. 1. 對數(shù)函數(shù)的概念對數(shù)函數(shù)的概念. .2. 2. 指數(shù)函數(shù)的反函數(shù)和對數(shù)函數(shù)的反函數(shù)指數(shù)函數(shù)的反函數(shù)和對數(shù)函數(shù)的反函數(shù). .2021/6/3027天才就是無止境刻苦勤奮地努力。 若有不當之處,請指正,謝謝!若有不當之處,請指正,謝謝!