(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題二 數(shù)列 第1講 等差數(shù)列與等比數(shù)列練典型習(xí)題 提數(shù)學(xué)素養(yǎng)(含解析)

上傳人:Sc****h 文檔編號:119018792 上傳時間:2022-07-13 格式:DOC 頁數(shù):5 大小:2.40MB
收藏 版權(quán)申訴 舉報(bào) 下載
(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題二 數(shù)列 第1講 等差數(shù)列與等比數(shù)列練典型習(xí)題 提數(shù)學(xué)素養(yǎng)(含解析)_第1頁
第1頁 / 共5頁
(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題二 數(shù)列 第1講 等差數(shù)列與等比數(shù)列練典型習(xí)題 提數(shù)學(xué)素養(yǎng)(含解析)_第2頁
第2頁 / 共5頁
(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題二 數(shù)列 第1講 等差數(shù)列與等比數(shù)列練典型習(xí)題 提數(shù)學(xué)素養(yǎng)(含解析)_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題二 數(shù)列 第1講 等差數(shù)列與等比數(shù)列練典型習(xí)題 提數(shù)學(xué)素養(yǎng)(含解析)》由會員分享,可在線閱讀,更多相關(guān)《(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題二 數(shù)列 第1講 等差數(shù)列與等比數(shù)列練典型習(xí)題 提數(shù)學(xué)素養(yǎng)(含解析)(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、第1講 等差數(shù)列與等比數(shù)列 一、選擇題 1.(2019·福州市質(zhì)量檢測)已知數(shù)列{an}中,a3=2,a7=1.若數(shù)列為等差數(shù)列,則a9=(  ) A.         B. C. D.- 解析:選C.因?yàn)閿?shù)列為等差數(shù)列,a3=2,a7=1, 所以數(shù)列的公差d===,所以=+(9-7)×=,所以a9=,故選C. 2.(一題多解)已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若S2=2,S3=-6,則S5=(  ) A.18 B.10 C.-14 D.-22 解析:選D.法一:設(shè)等比數(shù)列{an}的公比為q,由題意,得,解得,所以S5==-22,故選D. 法二:設(shè)等比數(shù)列{an}

2、的公比為q,易知q≠1,令A(yù)=,則Sn=Aqn-A,,解得,所以Sn=[(-2)n-1],所以S5=×[(-2)5-1]=-22,故選D.  3.已知數(shù)列{an}是等比數(shù)列,數(shù)列{bn}是等差數(shù)列,若a1·a6·a11=-3,b1+b6+b11=7π,則tan 的值是 (  ) A.- B.-1 C.- D. 解析:選A.依題意得,a=(-)3,3b6=7π,所以a6=-,b6=,所以==-,故tan=tan=tan=-tan=-,故選A. 4.(一題多解)(2019·合肥市第一次質(zhì)量檢測)已知正項(xiàng)等差數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),a5+a7-a=0,則S11的值為(

3、  ) A.11 B.12 C.20 D.22 解析:選D.通解:設(shè)等差數(shù)列{an}的公差為d(d>0),則由(a1+4d)+(a1+6d)-(a1+5d)2=0,得(a1+5d)(a1+5d-2)=0,所以a1+5d=0或a1+5d=2,又a1>0,所以a1+5d>0,則a1+5d=2,則S11=11a1+d=11(a1+5d)=11×2=22,故選D. 優(yōu)解:因?yàn)閧an}為正項(xiàng)等差數(shù)列,所以由等差數(shù)列的性質(zhì),并結(jié)合a5+a7-a=0,得2a6-a=0,a6=2,則S11===11a6=22,故選D. 5.等差數(shù)列{an}中,已知|a6|=|a11|,且公差d>0,則其前n項(xiàng)和取最

4、小值時n的值為(  ) A.6 B.7 C.8 D.9 解析:選C.由d>0可得等差數(shù)列{an}是遞增數(shù)列,又|a6|=|a11|,所以-a6=a11,即-a1-5d=a1+10d,所以a1=-,則a8=-<0,a9=>0,所以前8項(xiàng)和為前n項(xiàng)和的最小值,故選C. 6.(多選)已知數(shù)列{an}是等比數(shù)列,則下列命題正確的是(  ) A.?dāng)?shù)列{|an|}是等比數(shù)列 B.?dāng)?shù)列{anan+1}是等比數(shù)列 C.?dāng)?shù)列是等比數(shù)列 D.?dāng)?shù)列{lg a}是等比數(shù)列 解析:選ABC.因?yàn)閿?shù)列{an}是等比數(shù)列,所以=q.對于A,==|q|,所以數(shù)列{|an|}是等比數(shù)列,A正確;對于B,=

5、q2,所以數(shù)列{anan+1}是等比數(shù)列,B正確;對于C,==,所以數(shù)列是等比數(shù)列,C正確;對于D,==,不一定是常數(shù),所以D錯誤. 二、填空題 7.(2019·貴陽市第一學(xué)期監(jiān)測)已知數(shù)列{an}中,a1=3,a2=7.當(dāng)n∈N*時,an+2是乘積an·an+1的個位數(shù),則a2 019=________. 解析:a1=3,a2=7,a1a2=21,a3=1,a2a3=7,a4=7,a3a4=7,a5=7,a4a5=49,a6=9,a5a6=63,a7=3,a6a7=27,a8=7,a7a8=21,a9=1,a8a9=7,所以數(shù)列{an}是周期為6的數(shù)列,又2 019=6×336+3

6、,所以a2 019=a3=1. 答案:1 8.在數(shù)列{an}中,n∈N*,若=k(k為常數(shù)),則稱{an}為“等差比數(shù)列”,下列是對“等差比數(shù)列”的判斷: ①k不可能為0; ②等差數(shù)列一定是“等差比數(shù)列”; ③等比數(shù)列一定是“等差比數(shù)列”; ④“等差比數(shù)列”中可以有無數(shù)項(xiàng)為0. 其中所有正確判斷的序號是________. 解析:由等差比數(shù)列的定義可知,k不為0,所以①正確,當(dāng)?shù)炔顢?shù)列的公差為0,即等差數(shù)列為常數(shù)列時,等差數(shù)列不是等差比數(shù)列,所以②錯誤;當(dāng){an}是等比數(shù)列,且公比q=1時,{an}不是等差比數(shù)列,所以③錯誤;數(shù)列0,1,0,1,…是等差比數(shù)列,該數(shù)列中有無數(shù)多個

7、0,所以④正確. 答案:①④ 9.(2019·洛陽尖子生第二次聯(lián)考)已知函數(shù)f(x)=,g(x)=f(x-1)+1,則g(x)的圖象關(guān)于________對稱,若an=g+g+g+…+g(n∈N*),則數(shù)列{an}的通項(xiàng)公式為________. 解析:因?yàn)閒(x)=,所以f(-x)===-f(x),所以函數(shù)f(x)為奇函數(shù).因?yàn)間(x)=f(x-1)+1,所以g(x)的圖象關(guān)于點(diǎn)(1,1)對稱,若x1+x2=2,則有g(shù)(x1)+g(x2)=2,所以an=g+g+g+…+g=2(n-1)+g(1)=2n-2+f(0)+1=2n-1,即an=2n-1,故數(shù)列{an}的通項(xiàng)公式為an=2n-1.

8、 答案:(1,1) an=2n-1 三、解答題 10.(2019·昆明市診斷測試)已知數(shù)列{an}是等比數(shù)列,公比q<1,若a2=2,a1+a2+a3=7. (1)求{an}的通項(xiàng)公式; (2)設(shè)bn=log2an,求數(shù)列{bn}的前n項(xiàng)和. 解:(1)由已知得, 則或(舍去). 所以an=4×=23-n. (2)因?yàn)閎n=log2an=log223-n=3-n,所以數(shù)列{bn}是首項(xiàng)為2,公差為-1的等差數(shù)列. 設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn, 則Tn==. 11.(2019·武漢調(diào)研)已知等差數(shù)列{an}前三項(xiàng)的和為-9,前三項(xiàng)的積為-15. (1)求等差數(shù)列

9、{an}的通項(xiàng)公式; (2)若{an}為遞增數(shù)列,求數(shù)列{|an|}的前n項(xiàng)和Sn. 解:(1)設(shè)等差數(shù)列{an}的公差為d,則依題意得a2=-3,則a1=-3-d,a3=-3+d, 所以(-3-d)(-3)(-3+d)=-15,得d2=4,d=±2, 所以an=-2n+1或an=2n-7. (2)由題意得an=2n-7,所以|an|=, ①n≤3時,Sn=-(a1+a2+…+an)=n=6n-n2; ②n≥4時,Sn=-a1-a2-a3+a4+…+an=-2(a1+a2+a3)+(a1+a2+…+an)=18-6n+n2. 綜上,數(shù)列{|an|}的前n項(xiàng)和Sn=. 12.(

10、2019·長沙市統(tǒng)一模擬考試)已知數(shù)列{an}的首項(xiàng)a1=3,a3=7,且對任意的n∈N*,都有an-2an+1+an+2=0,數(shù)列{bn}滿足bn=a2n-1,n∈N*. (1)求數(shù)列{an},{bn}的通項(xiàng)公式; (2)求使b1+b2+…+bn>2 018成立的最小正整數(shù)n的值. 解:(1)令n=1得,a1-2a2+a3=0,解得a2=5. 又由an-2an+1+an+2=0知,an+2-an+1=an+1-an=…=a2-a1=2, 故數(shù)列{an}是首項(xiàng)a1=3,公差d=2的等差數(shù)列, 于是an=2n+1,bn=a2n-1=2n+1. (2)由(1)知,bn=2n+1. 于是b1+b2+…+bn=(21+22+…+2n)+n=+n=2n+1+n-2. 令f(n)=2n+1+n-2,易知f(n)是關(guān)于n的單調(diào)遞增函數(shù), 又f(9)=210+9-2=1 031,f(10)=211+10-2=2 056, 故使b1+b2+…+bn>2 018成立的最小正整數(shù)n的值是10. - 5 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!