(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題五 解析幾何 第2講 圓錐曲線的定義、方程與性質(zhì)練典型習(xí)題 提數(shù)學(xué)素養(yǎng)(含解析)

上傳人:Sc****h 文檔編號:119049730 上傳時間:2022-07-13 格式:DOC 頁數(shù):6 大?。?.41MB
收藏 版權(quán)申訴 舉報 下載
(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題五 解析幾何 第2講 圓錐曲線的定義、方程與性質(zhì)練典型習(xí)題 提數(shù)學(xué)素養(yǎng)(含解析)_第1頁
第1頁 / 共6頁
(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題五 解析幾何 第2講 圓錐曲線的定義、方程與性質(zhì)練典型習(xí)題 提數(shù)學(xué)素養(yǎng)(含解析)_第2頁
第2頁 / 共6頁
(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題五 解析幾何 第2講 圓錐曲線的定義、方程與性質(zhì)練典型習(xí)題 提數(shù)學(xué)素養(yǎng)(含解析)_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題五 解析幾何 第2講 圓錐曲線的定義、方程與性質(zhì)練典型習(xí)題 提數(shù)學(xué)素養(yǎng)(含解析)》由會員分享,可在線閱讀,更多相關(guān)《(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題五 解析幾何 第2講 圓錐曲線的定義、方程與性質(zhì)練典型習(xí)題 提數(shù)學(xué)素養(yǎng)(含解析)(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第2講 圓錐曲線的定義、方程與性質(zhì) 一、選擇題 1.已知雙曲線-=1(a>0,b>0)的焦點(diǎn)到漸近線的距離為,且離心率為2,則該雙曲線的實(shí)軸的長為(  ) A.1         B. C.2 D.2 解析:選C.由題意知雙曲線的焦點(diǎn)(c,0)到漸近線bx-ay=0的距離為=b=,即c2-a2=3,又e==2,所以a=1,該雙曲線的實(shí)軸的長為2a=2. 2.若拋物線y2=4x上一點(diǎn)P到其焦點(diǎn)F的距離為2,O為坐標(biāo)原點(diǎn),則△OFP的面積為(  ) A. B.1 C. D.2 解析:選B.設(shè)P(x0,y0),依題意可得|PF|=x0+1=2,解得x0=1,故y=4×1,解得y

2、0=±2,不妨取P(1,2),則△OFP的面積為×1×2=1. 3.(2019·高考全國卷Ⅲ)雙曲線C:-=1的右焦點(diǎn)為F,點(diǎn)P在C的一條漸近線上,O為坐標(biāo)原點(diǎn).若|PO|=|PF|,則△PFO的面積為(  ) A. B. C.2 D.3 解析:選A.不妨設(shè)點(diǎn)P在第一象限,根據(jù)題意可知c2=6,所以|OF|=. 又tan∠POF==,所以等腰三角形POF的高h(yuǎn)=×=,所以S△PFO=××=. 4.(2019·昆明模擬)已知F1,F(xiàn)2為橢圓C:+=1(a>b>0)的左、右焦點(diǎn),B為C的短軸的一個端點(diǎn),直線BF1與C的另一個交點(diǎn)為A,若△BAF2為等腰三角形,則=(  ) A. B.

3、 C. D.3 解析:選A.如圖,不妨設(shè)點(diǎn)B在y軸的正半軸上,根據(jù)橢圓的定義,得|BF1|+|BF2|=2a,|AF1|+|AF2|=2a,由題意知|AB|=|AF2|,所以|BF1|=|BF2|=a,|AF1|=,|AF2|=.所以=.故選A. 5.(2019·湖南湘東六校聯(lián)考)已知橢圓Γ:+=1(a>b>0)的長軸長是短軸長的2倍,過右焦點(diǎn)F且斜率為k(k>0)的直線與Γ相交于A,B兩點(diǎn).若=3,則k=(  ) A.1 B.2 C. D. 解析:選D.設(shè)A(x1,y1),B(x2,y2),因?yàn)椋?,所以y1=-3y2.因?yàn)闄E圓Γ的長軸長是短軸長的2倍,所以a=2b,設(shè)b=t,則

4、a=2t,故c=t,所以+=1.設(shè)直線AB的方程為x=sy+t,代入上述橢圓方程,得(s2+4)y2+2sty-t2=0,所以y1+y2=-,y1y2=-,即-2y2=-,-3y=-,得s2=,k=,故選D. 6.(多選)設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A為C上一點(diǎn),以F為圓心,|FA|為半徑的圓交l于B,D兩點(diǎn).若∠ABD=90°,且△ABF的面積為9,則(  ) A.△ABF是等邊三角形 B.|BF|=3 C.點(diǎn)F到準(zhǔn)線的距離為3 D.拋物線C的方程為y2=6x 解析:選ACD.因?yàn)橐訤為圓心,|FA|為半徑的圓交l于B,D兩點(diǎn),∠ABD=90°,由拋物線的

5、定義可得|AB|=|AF|=|BF|,所以△ABF是等邊三角形,所以∠FBD=30°.因?yàn)椤鰽BF的面積為|BF|2=9,所以|BF|=6.又點(diǎn)F到準(zhǔn)線的距離為|BF|sin 30°=3=p,則該拋物線的方程為y2=6x. 二、填空題 7.已知P(1,)是雙曲線C:-=1(a>0,b>0)漸近線上的點(diǎn),則雙曲線C的離心率是________. 解析:雙曲線C的一條漸近線的方程為y=x,P(1,)是雙曲線C漸近線上的點(diǎn),則=,所以離心率e====2. 答案:2 8.(2019·高考全國卷Ⅲ)設(shè)F1,F(xiàn)2為橢圓C:+=1的兩個焦點(diǎn),M為C上一點(diǎn)且在第一象限.若△MF1F2為等腰三角形,則M

6、的坐標(biāo)為________. 解析:不妨令F1,F(xiàn)2分別為橢圓C的左、右焦點(diǎn),根據(jù)題意可知c==4.因?yàn)椤鱉F1F2為等腰三角形,所以易知|F1M|=2c=8,所以|F2M|=2a-8=4.設(shè)M(x,y), 則得 所以M的坐標(biāo)為(3,). 答案:(3,) 9.(2019·湖南師大附中月考改編)拋物線x2=2py(p>0)的焦點(diǎn)為F,其準(zhǔn)線與雙曲線-=1相交于A,B兩點(diǎn),若△ABF為等邊三角形,則p=________,拋物線的焦點(diǎn)到雙曲線漸近線的距離為________. 解析:拋物線的焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為y=-,準(zhǔn)線方程與雙曲線方程聯(lián)立可得-=1,解得x=± .因?yàn)椤鰽BF為等邊三角

7、形,所以|AB|=p,即×2=p,解得p=6.則拋物線焦點(diǎn)坐標(biāo)為(0,3),雙曲線漸近線方程為y=±x,則拋物線的焦點(diǎn)到雙曲線漸近線的距離為=. 答案:6  三、解答題 10.(2019·高考天津卷)設(shè)橢圓+=1(a>b>0)的左焦點(diǎn)為F,上頂點(diǎn)為B.已知橢圓的短軸長為4,離心率為. (1)求橢圓的方程; (2)設(shè)點(diǎn)P在橢圓上,且異于橢圓的上、下頂點(diǎn),點(diǎn)M為直線PB與x軸的交點(diǎn),點(diǎn)N在y軸的負(fù)半軸上,若|ON|=|OF|(O為原點(diǎn)),且OP⊥MN,求直線PB的斜率. 解:(1)設(shè)橢圓的半焦距為c,依題意,2b=4,=,又a2=b2+c2,可得a=,b=2,c=1. 所以,橢圓的方

8、程為+=1. (2)由題意,設(shè)P(xp,yp)(xp≠0),M(xM,0).設(shè)直線PB的斜率為k(k≠0), 又B(0,2),則直線PB的方程為y=kx+2,與橢圓方程聯(lián)立整理得(4+5k2)x2+20kx=0, 可得xp=-, 代入y=kx+2得yp=, 進(jìn)而直線OP的斜率為=. 在y=kx+2中,令y=0,得xM=-. 由題意得N(0,-1),所以直線MN的斜率為-. 由OP⊥MN,得·=-1,化簡得k2=,從而k=±. 所以,直線PB的斜率為或-. 11.已知橢圓C:+=1(a>b>0)的離心率為,短軸長為2. (1)求橢圓C的標(biāo)準(zhǔn)方程; (2)設(shè)直線l:y=kx

9、+m與橢圓C交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),若kOM·kON=,求原點(diǎn)O到直線l的距離的取值范圍. 解:(1)由題知e==,2b=2,又a2=b2+c2,所以b=1,a=2, 所以橢圓C的標(biāo)準(zhǔn)方程為+y2=1. (2)設(shè)M(x1,y1),N(x2,y2),聯(lián)立得(4k2+1)x2+8kmx+4m2-4=0, 依題意,Δ=(8km)2-4(4k2+1)(4m2-4)>0,化簡得m2<4k2+1,① x1+x2=-,x1x2=, y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2, 若kOM·kON=,則=,即4y1y2=5x1x2, 所以4k2x1x2+

10、4km(x1+x2)+4m2=5x1x2,所以(4k2-5)·+4km·(-)+4m2=0, 即(4k2-5)(m2-1)-8k2m2+m2(4k2+1)=0,化簡得m2+k2=,② 由①②得0≤m2<,<k2≤, 因?yàn)樵c(diǎn)O到直線l的距離d=, 所以d2===-1+, 又<k2≤, 所以0≤d2<,所以原點(diǎn)O到直線l的距離的取值范圍是. 12.(2019·成都市第二次診斷性檢測)已知橢圓C:+=1(a>b>0)的短軸長為4,離心率為. (1)求橢圓C的標(biāo)準(zhǔn)方程; (2)設(shè)橢圓C的左、右焦點(diǎn)分別為F1,F(xiàn)2,左、右頂點(diǎn)分別為A,B,點(diǎn)M,N為橢圓C上位于x軸上方的兩點(diǎn),且F1

11、M∥F2N,直線F1M的斜率為2,記直線AM,BN的斜率分別為k1,k2,求3k1+2k2的值. 解:(1)由題意,得2b=4,=. 又a2-c2=b2,所以a=3,b=2,c=1. 所以橢圓C的標(biāo)準(zhǔn)方程為+=1. (2)由(1)可知A(-3,0),B(3,0),F(xiàn)1(-1,0). 據(jù)題意,直線F1M的方程為y=2(x+1). 記直線F1M與橢圓C的另一個交點(diǎn)為M′.設(shè)M(x1,y1)(y1>0),M′(x2,y2).因?yàn)镕1M∥F2N,所以根據(jù)對稱性,得N(-x2,-y2). 聯(lián)立,消去y,得14x2+27x+9=0. 由題意知x1>x2,所以x1=-,x2=-, k1===,k2===-, 所以3k1+2k2=3×+2×=0,即3k1+2k2的值為0. - 6 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!