購買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請(qǐng)見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
湖南工學(xué)院畢業(yè)設(shè)計(jì)(論文)工作中期檢查表
題目
電極片沖孔落料彎曲連續(xù)模設(shè)計(jì)
學(xué)生姓名
曾威
班級(jí)學(xué)號(hào)
2132070328
專業(yè)
材料成型及控制工程
指
導(dǎo)
教
師
填
寫
學(xué)生開題情況
已開題
學(xué)生調(diào)研及查閱文獻(xiàn)情況
已進(jìn)行
畢業(yè)設(shè)計(jì)(論文)原計(jì)劃有無調(diào)整
無
學(xué)生是否按計(jì)劃執(zhí)行工作進(jìn)度
是
學(xué)生是否能獨(dú)立完成工作任務(wù)
能
學(xué)生的英文翻譯情況
較好
學(xué)生每周接受指導(dǎo)的次數(shù)及時(shí)間
3次,6小時(shí)
畢業(yè)設(shè)計(jì)(論文)過程檢查記錄情況
較好
學(xué)生的工作態(tài)度在相應(yīng)選項(xiàng)劃“√”
□認(rèn)真
□一般
□較差
尚存在的問題及采取的措施:
1 專業(yè)知識(shí)還不夠好,還有待提高;
2 在設(shè)計(jì)過程中所犯的錯(cuò)誤比較多;
3 專業(yè)英語水平有待提高
措施:多于同學(xué)和老師交流,多查閱參考資料。
指導(dǎo)教師簽字: 年 月 日
系部意見:
負(fù)責(zé)人簽字:
年 月 日
湖南工學(xué)院畢業(yè)設(shè)計(jì)(論文)開題報(bào)告
題 目
電極板沖孔模設(shè)計(jì)
學(xué)生姓名
曾 威
班級(jí)學(xué)號(hào)
212070328
專業(yè)
材料成型及控制工程
一、課題的目的和意義:
沖壓加工作為一個(gè)行業(yè),在國民經(jīng)濟(jì)的加工行業(yè)中占有重要地位。根據(jù)統(tǒng)計(jì),沖壓件在各個(gè)行業(yè)中均占有相當(dāng)大的比重,尤其在汽車、電機(jī)、儀表、軍工、家電等方面所占比重更大。采用沖壓模具生產(chǎn)零部件,具有生產(chǎn)效益高,質(zhì)量好,成本低,節(jié)約能源和原料等一系列優(yōu)點(diǎn),它已成為當(dāng)代工業(yè)生產(chǎn)中的重要手段和工藝發(fā)展方向。
模具工業(yè)已被我國正式確定為基礎(chǔ)產(chǎn)業(yè),早在“十五”期間就被列為重點(diǎn)扶持產(chǎn)業(yè)。從1997年開始,我國模具工業(yè)產(chǎn)值超過了機(jī)床工業(yè)產(chǎn)值。因此模具對(duì)國民經(jīng)濟(jì)和社會(huì)發(fā)展起著舉足輕重的作用。
冷擠壓是一種先進(jìn)的少無切削加工工藝之一。它是在常溫下,使固態(tài)的金屬在巨大壓力和一定的速度下,通過模腔產(chǎn)生塑性變形而獲得一定形狀零件的一種加工方法。冷擠壓的工藝過程是:先將經(jīng)處理過的毛坯料放在凹模內(nèi),借助凸模的壓力使金屬處于三向受壓應(yīng)力狀態(tài)下產(chǎn)生塑性變形,通過凹模的下通孔或凸模與凹模的環(huán)形間隙將金屬擠出。它是一種在許多行業(yè)廣泛使用的金屬壓力加工工藝方法。
冷擠壓過程的關(guān)鍵問題是想法降低材料的變形抗力,提高模具的承載能力。
本次畢業(yè)設(shè)計(jì),指導(dǎo)老師給我安排的是萬向節(jié)軸套反擠壓模設(shè)計(jì)。經(jīng)過回顧大學(xué)所學(xué)的專業(yè)知識(shí),參考相關(guān)文獻(xiàn)資料,以及指導(dǎo)老師指導(dǎo)之后,我初步理清了本次設(shè)計(jì)的基本思路,掌握了有關(guān)畢業(yè)設(shè)計(jì)的基本方法。希望通過完成本次設(shè)計(jì),我能更好地了解模具設(shè)計(jì)過程,進(jìn)一步的掌握模具的相關(guān)結(jié)構(gòu),為今后步入模具行業(yè)打好堅(jiān)實(shí)基礎(chǔ)。
二、文獻(xiàn)綜述
1、中國沖壓模具的發(fā)展現(xiàn)狀
中國沖壓模具的發(fā)展現(xiàn)狀改革開放帶了我國的經(jīng)濟(jì)進(jìn)入高速發(fā)展的時(shí)期,模具的市場(chǎng)的需求量也進(jìn)一步的增加。模具行業(yè)也一直以15%左右的增速再發(fā)展。因此帶來的模具工業(yè)企業(yè)的所有制成分的巨大變化,一些國有專業(yè)模具廠也如雨后春筍般的建立起來,同時(shí)也帶來了以集體、獨(dú)資、私營和合資等形式的快速發(fā)展。
賦有“模具之鄉(xiāng)”的浙江寧波和黃巖地區(qū)是現(xiàn)今我國規(guī)模最大的兩個(gè)地方;廣東地區(qū)也漸漸掀起了開建模具廠的浪潮;其中科龍、康佳等集團(tuán)紛紛建立了自己的模具制造中心;中外合資或是外商獨(dú)資形式的模具企業(yè)現(xiàn)也有幾千家。
近年許多模具企業(yè)加大了用于技術(shù)進(jìn)步的投資力度,將技術(shù)進(jìn)步視為企業(yè)發(fā)展的重要?jiǎng)恿?。一些國?nèi)模具企業(yè)已普及了二維CAD,并陸續(xù)開始使用UG、Pro/Engineer、I-DEAS、Euclid-IS等國際通用軟件,個(gè)別廠家還引進(jìn)了Moldflow、C-Flow、DYNAFORM、Optris和MAGMASOFT等CAE軟件,并成功應(yīng)用于沖壓模的設(shè)計(jì)中。以汽車覆蓋件模具為代表的大型沖壓模具的制造技術(shù)已取得很大進(jìn)步,東風(fēng)汽車公司模具廠、一汽模具中心等模具廠家已能生產(chǎn)部分轎車覆蓋件模具。此外,許多研究機(jī)構(gòu)和大專院校開展模具技術(shù)的研究和開發(fā)。經(jīng)過多年的努力,在模具CAD/CAE/CAM技術(shù)方面取得了顯著進(jìn)步;在提高模具質(zhì)量和縮短模具設(shè)計(jì)制造周期等方面做出了貢獻(xiàn)。
例如,吉林大學(xué)汽車覆蓋件成型技術(shù)所獨(dú)立研制的汽車覆蓋件沖壓成型分析KMAS軟件,華中理工大學(xué)模具技術(shù)國家重點(diǎn)實(shí)驗(yàn)室開發(fā)的注塑模、汽車覆蓋件模具和級(jí)進(jìn)模CAD/CAE/CAM軟件,上海交通大學(xué)模具CAD國家工程研究中心開發(fā)的冷沖模和精沖研究中心開發(fā)的冷沖模和精沖模CAD軟件等在國內(nèi)模具行業(yè)擁有不少的用戶。
雖然中國模具工業(yè)在過去十多年中取得了令人矚目的發(fā)展,但許多方面與工業(yè)發(fā)達(dá)國家相比仍有較大的差距。例如,精密加工設(shè)備在模具加工設(shè)備中的比重比較低;CAD/CAE/CAM技術(shù)的普及率不高;許多先進(jìn)的模具技術(shù)應(yīng)用不夠廣泛等等,致使相當(dāng)一部分大型、精密、復(fù)雜和長壽命模具依賴進(jìn)口。
2、中國沖壓模具的發(fā)展方向
模具技術(shù)的發(fā)展應(yīng)該為適應(yīng)模具產(chǎn)品“交貨期短”、“精度高”、“質(zhì)量好”、“價(jià)格低”的要求服務(wù)。達(dá)到這一要求急需發(fā)展如下幾項(xiàng):
(1)全面推廣CAD/CAM/CAE技術(shù)模具CAD/CAM/CAE技術(shù)是模具設(shè)計(jì)制造的發(fā)展方向。隨著微機(jī)軟件的發(fā)展和進(jìn)步,普及CAD/CAM/CAE技術(shù)的條件已基本成熟,各企業(yè)將加大CAD/CAM技術(shù)培訓(xùn)和技術(shù)服務(wù)的力度;進(jìn)一步擴(kuò)大CAE技術(shù)的應(yīng)用范圍。計(jì)算機(jī)和網(wǎng)絡(luò)的發(fā)展正使CAD/CAM/CAE技術(shù)跨地區(qū)、跨企業(yè)、跨院所地在整個(gè)行業(yè)中推廣成為可能,實(shí)現(xiàn)技術(shù)資源的重新整合,使虛擬制造成為可能。
(2)高速銑削加工國外近年來發(fā)展的高速銑削加工,大幅度提高了加工效率,并可獲得極高的表面光潔度。另外,還可加工高硬度模塊,還具有溫升低、熱變形小等優(yōu)點(diǎn)。高速銑削加工技術(shù)的發(fā)展,對(duì)汽車、家電行業(yè)中大型型腔模具制造注入了新的活力。目前它已向更高的敏捷化、智能化、集成化方向發(fā)展。
(3)模具掃描及數(shù)字化系統(tǒng)高速掃描機(jī)和模具掃描系統(tǒng)提供了從模型或?qū)嵨飹呙璧郊庸こ銎谕哪P退璧闹T多功能,大大縮短了模具的在研制制造周期。有些快速掃描系統(tǒng),可快速安裝在已有的數(shù)控銑床及加工中心上,實(shí)現(xiàn)快速數(shù)據(jù)采集、自動(dòng)生成各種不同數(shù)控系統(tǒng)的加工程序、不同格式的CAD數(shù)據(jù),用于模具制造業(yè)的“逆向工程”。模具掃描系統(tǒng)已在汽車、摩托車、家電等行業(yè)得到成功應(yīng)用,相信在“十五”期間將發(fā)揮更大的作用。
(4)電火花銑削加工電火花銑削加工技術(shù)也稱為電火花創(chuàng)成加工技術(shù),這是一種替代傳統(tǒng)的用成型電極加工型腔的新技術(shù),它是有高速旋轉(zhuǎn)的簡單的管狀電極作三維或二維輪廓加工(像數(shù)控銑一樣),因此不再需要制造復(fù)雜的成型電極,這顯然是電火花成形加工領(lǐng)域的重大發(fā)展。國外已有使用這種技術(shù)的機(jī)床在模具加工中應(yīng)用。預(yù)計(jì)這一技術(shù)將得到發(fā)展。
(5)提高模具標(biāo)準(zhǔn)化程度我國模具標(biāo)準(zhǔn)化程度正在不斷提高,估計(jì)目前我國模具標(biāo)準(zhǔn)件使用覆蓋率已達(dá)到30%左右。國外發(fā)達(dá)國家一般為80%左右。
(6)優(yōu)質(zhì)材料及先進(jìn)表面處理技術(shù)選用優(yōu)質(zhì)鋼材和應(yīng)用相應(yīng)的表面處理技術(shù)來提高模具的壽命就顯得十分必要。模具熱處理和表面處理是否能充分發(fā)揮模具鋼材料性能的關(guān)鍵環(huán)節(jié)。模具熱處理的發(fā)展方向是采用真空熱處理。模具表面處理除完善應(yīng)發(fā)展工藝先進(jìn)的氣相沉積(TiN、TiC等)、等離子噴涂等技術(shù)。
(7)模具研磨拋光將自動(dòng)化、智能化模具表面的質(zhì)量對(duì)模具使用壽命、制件外觀質(zhì)量等方面均有較大的影響,研究自動(dòng)化、智能化的研磨與拋光方法替代現(xiàn)有手工操作,以提高模具表面質(zhì)量是重要的發(fā)展趨勢(shì)。
(8)模具自動(dòng)加工系統(tǒng)的發(fā)展這是我國長遠(yuǎn)發(fā)展的目標(biāo)。模具自動(dòng)加工系統(tǒng)應(yīng)有多臺(tái)機(jī)床合理組合;配有隨行定位夾具或定位盤;有完整的機(jī)具、刀具數(shù)控庫;有完整的數(shù)控柔性同步系統(tǒng);有質(zhì)量監(jiān)測(cè)控制系統(tǒng)。
我國沖壓模具與發(fā)達(dá)國家企業(yè)之間的差距不小,因此要發(fā)揮整體優(yōu)勢(shì)和綜合競(jìng)爭(zhēng)力,要加強(qiáng)統(tǒng)籌協(xié)調(diào)、完善合作機(jī)制,創(chuàng)造性地工作。也需要加大對(duì)模具相關(guān)專業(yè)人才的綜合素質(zhì)培訓(xùn)投入。
三、設(shè)計(jì)任務(wù)書
1、課題名稱
課題名稱為萬電極板沖孔模設(shè)計(jì),電極板如上圖所示;材料為10鋼,料厚5mm,小批量生產(chǎn)。
2、設(shè)計(jì)內(nèi)容與步驟
(1)沖壓零件的工藝性分析:材料的擠壓性能分析、結(jié)構(gòu)形狀工藝性分析、尺寸的工藝性分析、精度的工藝性分析等。
(2)沖壓工藝的總體方案的分析和確定:單工序模方案、復(fù)合模方案、級(jí)進(jìn)模方案的對(duì)比,最終確定的方案;
(3)基于所確定的總體方案,進(jìn)行排樣設(shè)計(jì):擬定工位數(shù)、各工位的沖壓性質(zhì)和沖壓順序,繪制板料的排樣圖;
(4)基于總體方案和排樣方案,進(jìn)行工藝計(jì)算,如:凸凹模尺寸及偏差、間隙、變形力、壓力中心、卸料力等計(jì)算;
(5)模具關(guān)鍵結(jié)構(gòu)的方案設(shè)計(jì):凸凹模結(jié)構(gòu)形式、導(dǎo)向、導(dǎo)料、定位、卸料等;
(6)模具總體結(jié)構(gòu)設(shè)計(jì)與確定:基于上述內(nèi)容,設(shè)計(jì)并確定模具總體結(jié)構(gòu),描述模具的工作原理和工藝動(dòng)作,并繪制二維裝配圖和相應(yīng)的三維圖;
(7)選擇合理的沖壓設(shè)備(考慮設(shè)備噸位與變形力的吻合、沖壓封閉高度與設(shè)備裝模高度的吻合、模具的平面尺寸與設(shè)備工作臺(tái)面尺寸的吻合等);
(8)進(jìn)行模具零件的詳細(xì)設(shè)計(jì):確定模具中的標(biāo)準(zhǔn)件(聯(lián)結(jié)零件:螺釘、銷釘、彈性元件等)的型號(hào)和數(shù)量,對(duì)模具中的非標(biāo)準(zhǔn)件進(jìn)行詳細(xì)的結(jié)構(gòu)尺寸設(shè)計(jì),繪制相應(yīng)的二維零件圖;
(9)編制模具中主要零件的制造工藝方案和加工方法;
(10)撰寫設(shè)計(jì)說明書;
(11)所有設(shè)計(jì)文檔、資料的整理、收尾、答辯。
3、繪圖任務(wù)
(1) 模具總裝配圖
(2) 模具零件圖
(3) 模具總成三維圖(可選)
(4) 模具主要零件三維圖(可選)
四、設(shè)計(jì)過程進(jìn)度計(jì)劃
(1)第五周(2011-3-21~2011-3-27):完成以下航設(shè)計(jì)內(nèi)容中的“1-2”
(2)第六周(3-28~4-3):完成以上設(shè)計(jì)內(nèi)容的“3-5”
(3)第七八周(4-4~4-17):完成以上設(shè)計(jì)內(nèi)容的“6-7”
(4)第九十周(4-18~5-1):完成以上設(shè)計(jì)內(nèi)容的“8”
(5)第十一、十二周(5-2~5-15):完成以上設(shè)計(jì)內(nèi)容中的“9”
(6)第十三、十四周(5-16~5-29):完成以上設(shè)計(jì)內(nèi)容中的“10”
(7)第十五周(5-30~6-5):完成以上設(shè)計(jì)內(nèi)容中的“11”
指導(dǎo)教師批閱意見
指導(dǎo)教師(簽名): 年 月 日
湖南工學(xué)院畢業(yè)設(shè)計(jì)(論文)工作中期檢查表
題目
電極板沖孔模設(shè)計(jì)
學(xué)生姓名
張亮
班級(jí)學(xué)號(hào)
212070352
專業(yè)
材料成型及控制工程
指
導(dǎo)
教
師
填
寫
學(xué)生開題情況
學(xué)生調(diào)研及查閱文獻(xiàn)情況
畢業(yè)設(shè)計(jì)(論文)原計(jì)劃有無調(diào)整
學(xué)生是否按計(jì)劃執(zhí)行工作進(jìn)度
學(xué)生是否能獨(dú)立完成工作任務(wù)
學(xué)生的英文翻譯情況
學(xué)生每周接受指導(dǎo)的次數(shù)及時(shí)間
畢業(yè)設(shè)計(jì)(論文)過程檢查記錄情況
學(xué)生的工作態(tài)度在相應(yīng)選項(xiàng)劃“√”
□認(rèn)真
□一般
□較差
尚存在的問題及采取的措施:
指導(dǎo)教師簽字: 年 月 日
系部意見:
負(fù)責(zé)人簽字:
年 月 日
湖南工學(xué)院2011 屆畢業(yè)設(shè)計(jì)(論文)指導(dǎo)教師評(píng)閱表
系: 機(jī)械工程系 專業(yè): 材料成型
學(xué)生姓名
曾威
學(xué) 號(hào)
212070328
班 級(jí)
成型0703
專 業(yè)
材料成型及控制工程
指導(dǎo)教師姓名
楊國輝
課題名稱
電極片沖孔落料彎曲連續(xù)模設(shè)計(jì)
評(píng)語:(包括以下方面,①學(xué)習(xí)態(tài)度、工作量完成情況、材料的完整性和規(guī)范性;②檢索和利用文獻(xiàn)能力、計(jì)算機(jī)應(yīng)用能力;③學(xué)術(shù)水平或設(shè)計(jì)水平、綜合運(yùn)用知識(shí)能力和創(chuàng)新能力;)
是否同意參加答辯:
是□ 否□
指導(dǎo)教師評(píng)定成績
分值:
指導(dǎo)教師簽字: 年 月 日
第 26 頁 共 27 頁
e pos 模具工業(yè)現(xiàn)狀Process simulation in stamping – recent
applications for product and process design
Abstract
Process simulation for product and process design is currently being practiced in industry. However, a number of input variables have a significant effect on the accuracy and reliability of computer predictions. A study was conducted to evaluate the capability of FE-simulations for predicting part characteristics and process conditions in forming complex-shaped, industrial parts.
In industrial applications, there are two objectives for conducting FE-simulations of the stamping process; (1) to optimize the product design by analyzing formability at the product design stage and (2) to reduce the tryout time and cost in process design by predicting the deformation process in advance during the die design stage. For each of these objectives, two kinds of FE-simulations are applied. Pam-Stamp, an incremental dynamic-explicit FEM code released by Engineering Systems Int'l, matches the second objective well because it can deal with most of the practical stamping parameters. FAST_FORM3D, a one-step FEM code released by Forming Technologies, matches the first objective because it only requires the part geometry and not the complex process information.
In a previous study, these two FE codes were applied to complex-shaped parts used in manufacturing automobiles and construction machinery. Their capabilities in predicting formability issues in stamping were evaluated. This paper reviews the results of this study and summarizes the recommended procedures for obtaining accurate and reliable results from FE simulations.
In another study, the effect of controlling the blank holder force (BHF) during the deep drawing of hemispherical, dome-bottomed cups was investigated. The standard automotive aluminum-killed, drawing-quality (AKDQ) steel was used as well as high performance materials such as high strength steel, bake hard steel, and aluminum 6111. It was determined that varying the BHF as a function of stroke improved the strain distributions in the domed cups.
Keywords: Stamping; Process ;stimulation; Process design
1. Introduction
The design process of complex shaped sheet metal stampings such as automotive panels, consists of many stages of decision making and is a very expensive and time consuming process. Currently in industry, many engineering decisions are made based on the knowledge of experienced personnel and these decisions are typically validated during the soft tooling and prototyping stage and during hard die tryouts. Very often the soft and hard tools must be reworked or even redesigned and remanufactured to provide parts with acceptable levels of quality.
The best case scenario would consist of the process outlined in Fig. 1. In this design process, the experienced product designer would have immediate feedback using a specially design software called one-step FEM to estimate the formability of their design. This would allow the product designer to make necessary changes up front as opposed to down the line after expensive tooling has been manufactured. One-step FEM is particularly suited for product analysis since it does not require binder, addendum, or even most process conditions. Typically this information is not available during the product design phase. One-step FEM is also easy to use and computationally fast, which allows the designer to play “what if” without much time investment.
Fig. 1. Proposed design process for sheet metal stampings.
Once the product has been designed and validated, the development project would enter the “time zero” phase and be passed onto the die designer. The die designer would validate his/her design with an incremental FEM code and make necessary design changes and perhaps even optimize the process parameters to ensure not just minimum acceptability of part quality, but maximum achievable quality. This increases product quality but also increase process robustness. Incremental FEM is particularly suited for die design analysis since it does require binder, addendum, and process conditions which are either known during die design or desired to be known.
The validated die design would then be manufactured directly into the hard production tooling and be validated with physical tryouts during which the prototype parts would be made. Tryout time should be decreased due to the earlier numerical validations. Redesign and remanufacturing of the tooling due to unforeseen forming problems should be a thing of the past. The decrease in tryout time and elimination of redesign/remanufacturing should more than make up for the time used to numerically validate the part, die, and process.
Optimization of the stamping process is also of great importance to producers of sheet stampings. By modestly increasing one's investment in presses, equipment, and tooling used in sheet forming, one may increase one's control over the stamping process tremendously. It has been well documented that blank holder force is one of the most sensitive process parameters in sheet forming and therefore can be used to precisely control the deformation process.
By controlling the blank holder force as a function of press stroke AND position around the binder periphery, one can improve the strain distribution of the panel providing increased panel strength and stiffness, reduced springback and residual stresses, increased product quality and process robustness. An inexpensive, but industrial quality system is currently being developed at the ERC/NSM using a combination of hydraulics and nitrogen and is shown in Fig. 2. Using BHF control can also allow engineers to design more aggressive panels to take advantage the increased formability window provided by BHF control.
Fig. 2. Blank holder force control system and tooling being developed at the ERC/NSM labs.
Three separate studies were undertaken to study the various stages of the design process. The next section describes a study of the product design phase in which the one-step FEM code FAST_FORM3D (Forming Technologies) was validated with a laboratory and industrial part and used to predict optimal blank shapes. Section 4 summarizes a study of the die design stage in which an actual industrial panel was used to validate the incremental FEM code Pam-Stamp (Engineering Systems Int'l). Section 5 covers a laboratory study of the effect of blank holder force control on the strain distributions in deep drawn, hemispherical, dome-bottomed cups.
2. Product simulation – applications
The objective of this investigation was to validate FAST_FORM3D, to determine FAST_FORM3D's blank shape prediction capability, and to determine how one-step FEM can be implemented into the product design process. Forming Technologies has provided their one-step FEM code FAST_FORM3D and training to the ERC/NSM for the purpose of benchmarking and research. FAST_FORM3D does not simulate the deformation history. Instead it projects the final part geometry onto a flat plane or developable surface and repositions the nodes and elements until a minimum energy state is reached. This process is computationally faster than incremental simulations like Pam-Stamp, but also makes more assumptions. FAST_FORM3D can evaluate formability and estimate optimal blank geometries and is a strong tool for product designers due to its speed and ease of use particularly during the stage when the die geometry is not available.
In order to validate FAST_FORM3D, we compared its blank shape prediction with analytical blank shape prediction methods. The part geometry used was a 5?in. deep 12?in. by 15?in. rectangular pan with a 1?in. flange as shown in Fig. 3. Table 1 lists the process conditions used. Romanovski's empirical blank shape method and the slip line field method was used to predict blank shapes for this part which are shown in Fig. 4.
Fig. 3. Rectangular pan geometry used for FAST_FORM3D validation.
Table 1. Process parameters used for FAST_FORM3D rectangular pan validation
Fig. 4. Blank shape design for rectangular pans using hand calculations.
(a) Romanovski's empirical method; (b) slip line field analytical method.
Fig. 5(a) shows the predicted blank geometries from the Romanovski method, slip line field method, and FAST_FORM3D. The blank shapes agree in the corner area, but differ greatly in the side regions. Fig. 5(b)–(c) show the draw-in pattern after the drawing process of the rectangular pan as simulated by Pam-Stamp for each of the predicted blank shapes. The draw-in patterns for all three rectangular pans matched in the corners regions quite well. The slip line field method, though, did not achieve the objective 1?in. flange in the side region, while the Romanovski and FAST_FORM3D methods achieved the 1?in. flange in the side regions relatively well. Further, only the FAST_FORM3D blank agrees in the corner/side transition regions. Moreover, the FAST_FORM3D blank has a better strain distribution and lower peak strain than Romanovski as can be seen in Fig. 6.
Fig. 5. Various blank shape predictions and Pam-Stamp simulation results for the rectangular pan.
(a) Three predicted blank shapes; (b) deformed slip line field blank; (c) deformed Romanovski blank; (d) deformed FAST_FORM3D blank.
Fig. 6. Comparison of strain distribution of various blank shapes using Pam-Stamp for the rectangular pan.
(a) Deformed Romanovski blank; (b) deformed FAST_FORM3D blank.
To continue this validation study, an industrial part from the Komatsu Ltd. was chosen and is shown in Fig. 7(a). We predicted an optimal blank geometry with FAST_FORM3D and compared it with the experimentally developed blank shape as shown in Fig. 7(b). As seen, the blanks are similar but have some differences.
Fig. 7. FAST_FORM3D simulation results for instrument cover validation.
(a) FAST_FORM3D's formability evaluation; (b) comparison of predicted and experimental blank geometries.
Next we simulated the stamping of the FAST_FORM3D blank and the experimental blank using Pam-Stamp. We compared both predicted geometries to the nominal CAD geometry (Fig. 8) and found that the FAST_FORM3D geometry was much more accurate. A nice feature of FAST_FORM3D is that it can show a “failure” contour plot of the part with respect to a failure limit curve which is shown in Fig. 7(a). In conclusion, FAST_FORM3D was successful at predicting optimal blank shapes for a laboratory and industrial parts. This indicates that FAST_FORM3D can be successfully used to assess formability issues of product designs. In the case of the instrument cover, many hours of trial and error experimentation could have been eliminated by using FAST_FORM3D and a better blank shape could have been developed.
Fig. 8. Comparison of FAST_FORM3D and experimental blank shapes for the instrument cover.
(a) Experimentally developed blank shape and the nominal CAD geometry; (b) FAST_FORM3D optimal blank shape and the nominal CAD geometry.
3. Die and process simulation – applications
In order to study the die design process closely, a cooperative study was conducted by Komatsu Ltd. of Japan and the ERC/NSM. A production panel with forming problems was chosen by Komatsu. This panel was the excavator's cabin, left-hand inner panel shown in Fig. 9. The geometry was simplified into an experimental laboratory die, while maintaining the main features of the panel. Experiments were conducted at Komatsu using the process conditions shown in Table 2. A forming limit diagram (FLD) was developed for the drawing-quality steel using dome tests and a vision strain measurement system and is shown in Fig. 10. Three blank holder forces (10, 30, and 50?ton) were used in the experiments to determine its effect. Incremental simulations of each experimental condition was conducted at the ERC/NSM using Pam-Stamp.
Fig. 9. Actual product – cabin inner panel.
Table 2. Process conditions for the cabin inner investigation
Fig. 10. Forming limit diagram for the drawing-quality steel used in the cabin inner investigation.
At 10?ton, wrinkling occurred in the experimental parts as shown in Fig. 11. At 30?ton, the wrinkling was eliminated as shown in Fig. 12. These experimental observations were predicted with Pam-stamp simulations as shown in Fig. 13. The 30?ton panel was measured to determine the material draw-in pattern. These measurements are compared with the predicted material draw-in in Fig. 14. Agreement was very good, with a maximum error of only 10?mm. A slight neck was observed in the 30?ton panel as shown in Fig. 13. At 50?ton, an obvious fracture occurred in the panel.
Fig. 11. Wrinkling in laboratory cabin inner panel, BHF=10?ton.
Fig. 12. Deformation stages of the laboratory cabin inner and necking, BHF=30?ton.
(a) Experimental blank; (b) experimental panel, 60% formed; (c) experimental panel, fully formed; (d) experimental panel, necking detail.
Fig. 13. Predication and elimination of wrinkling in the laboratory cabin inner.
(a) Predicted geometry, BHF=10?ton; (b) predicted geometry, BHF=30?ton.
Fig. 14. Comparison of predicted and measured material draw-in for lab cabin inner, BHF=30?ton.
Strains were measured with the vision strain measurement system for each panel, and the results are shown in Fig. 15. The predicted strains from FEM simulations for each panel are shown in Fig. 16. The predictions and measurements agree well regarding the strain distributions, but differ slightly on the effect of BHF. Although the trends are represented, the BHF tends to effect the strains in a more localized manner in the simulations when compared to the measurements. Nevertheless, these strain prediction show that Pam-Stamp correctly predicted the necking and fracture which occurs at 30 and 50?ton. The effect of friction on strain distribution was also investigated with simulations and is shown in Fig. 17.
Fig. 15. Experimental strain measurements for the laboratory cabin inner.
(a) measured strain, BHF=10?ton (panel wrinkled); (b) measured strain, BHF=30?ton (panel necked); (c) measured strain, BHF =50?ton (panel fractured).
Fig. 16. FEM strain predictions for the laboratory cabin inner.
(a) Predicted strain, BHF=10?ton; (b) predicted strain, BHF=30?ton; (c) predicted strain, BHF=50?ton.
Fig. 17. Predicted effect of friction for the laboratory cabin inner, BHF=30?ton.
(a) Predicted strain, μ=0.06; (b) predicted strain, μ=0.10.
A summary of the results of the comparisons is included in Table 3. This table shows that the simulations predicted the experimental observations at least as well as the strain measurement system at each of the experimental conditions. This indicates that Pam-Stamp can be used to assess formability issues associated with the die design.
Table 3. Summary results of cabin inner study
4. Blank holder force control – applications
The objective of this investigation was to determine the drawability of various, high performance materials using a hemispherical, dome-bottomed, deep drawn cup (see Fig. 18) and to investigate various time variable blank holder force profiles. The materials that were investigated included AKDQ steel, high strength steel, bake hard steel, and aluminum 6111 (see Table 4). Tensile tests were performed on these materials to determine flow stress and anisotropy characteristics for analysis and for input into the simulations (see Fig. 19 and Table 5).
Fig. 18. Dome cup tooling geometry.
Table 4. Material used for the dome cup study
Fig. 19. Results of tensile tests of aluminum 6111, AKDQ, high strength, and bake hard steels.
(a) Fractured tensile specimens; (b) Stress/strain curves.
Table 5. Tensile test data for aluminum 6111, AKDQ, high strength, and bake hard steels
It is interesting to note that the flow stress curves for bake hard steel and AKDQ steel were very similar except for a 5% reduction in elongation for bake hard. Although, the elongations for high strength steel and aluminum 6111 were similar, the n-value for aluminum 6111 was twice as large. Also, the r-value for AKDQ was much bigger than 1, while bake hard was nearly 1, and aluminum 6111 was much less than 1.
The time variable BHF profiles used in this investigation included constant, linearly decreasing, and pulsating (see Fig. 20). The experimental conditions for AKDQ steel were simulated using the incremental code Pam-Stamp. Examples of wrinkled, fractured, and good laboratory cups are shown in Fig. 21 as well as an image of a simulated wrinkled cup.
Fig. 20. BHF time-profiles used for the dome cup study.
(a) Constant BHF; (b) ramp BHF; (c) pulsating BHF.
Fig. 21. Experimental and simulated dome cups.
(a) Experimental good cup; (b) experimental fractured cup; (c) experimental wrinkled cup; (d) simulated wrinkled cup.
Limits of drawability were experimentally investigated using constant BHF. The results of this study are shown in Table 6. This table indicates that AKDQ had the largest drawability window while aluminum had the smallest and bake hard and high strength steels were in the middle. The strain distributions for constant, ramp, and pulsating BHF are compared experimentally in Fig. 22 and are compared with simulations in Fig. 23 for AKDQ. In both simulations and experiments, it was found that the ramp BHF trajectory improved the strain distribution the best. Not only were peak strains reduced by up to 5% thereby reducing the possibility of fracture, but low strain regions were increased. This improvement in strain distribution can increase product stiffness and strength, decrease springback and residual stresses, increase product quality and process robustness.
Table 6. Limits of drawability for dome cup with constant BHF
Fig. 22. Experimental effect of time variable BHF on engineering strain in an AKDQ steel dome cup.
Fig. 23. Simulated effect of time variable BHF on true strain in an AKDQ steel dome cup.
Pulsating BHF, at the frequency range investigated, was not found to have an effect on strain distribution. This was likely due to the fact the frequency of pulsation that was tested was only 1?Hz. It is known from previous experiments of other researchers that proper frequencies range from 5 to 25?Hz [3]. A comparison of load-stroke curves from simulation and experiments are shown in Fig. 24 for AKDQ. Good agreement was found for the case where μ=0.08. This indicates that FEM simulations can be used to assess the formability improvements that can be obtained by using BHF control techniques.
Fig. 24. Comparison of experimental and simulated load-stroke curves for an AKDQ steel dome cup.
5 Conclusions and future work
In this paper, we evaluated an improved design process for complex stampings which involved eliminating the soft tooling phase and incorporated the validation of product and process using one-step and incremental FEM simulations. Also, process improvements were proposed consisting of the implementation of blank holder force control to increase product quality and process robustness.
Three separate investigations were summarized which analyzed various stages in the design process. First, the product design phase was investigated with a laboratory and industrial validation of the one-step FEM code FAST_FORM3D and its ability to assess formability issues involved in product design. FAST_FORM3D was successful at predicting optimal blank shapes for a rectangular pan and an industrial instrument cover. In the case of the instrument cover, many hours of trial and error experimentation could have been eliminated by using FAST_FORM3D and a better blank shape could have been developed.
Second, the die design