高二數學:《空間向量的數量積》課件
《高二數學:《空間向量的數量積》課件》由會員分享,可在線閱讀,更多相關《高二數學:《空間向量的數量積》課件(30頁珍藏版)》請在裝配圖網上搜索。
,歡迎進入數學課堂,空間向量的數量積運算,根據功的計算,我們定義了平面兩向量的數量積運算.一旦定義出來,我們發(fā)現(xiàn)這種運算非常有用,它能解決有關長度和角度問題.,1)兩個向量的夾角的定義:,2)兩個向量的數量積,,,注:①兩個向量的數量積是數量,而不是向量.②規(guī)定:零向量與任意向量的數量積等于零.③,注:性質②是證明兩向量垂直的依據;性質③是求向量的長度(模)的依據;,(3)空間兩個向量的數量積性質,(4)空間向量的數量積滿足的運算律,課堂練習,解:,,,,,3.已知線段AB、BD在平面內,BD⊥AB,線段AC⊥,如果AB=a,BD=b,AC=c,求C、D間的距離.,第3題:,第4題:,妙!,3.已知線段、在平面內,,線段如果,求、之間的距離.,解:∵,,另外,空間向量的運用還經常用來判定空間垂直關系,證兩直線垂直線??赊D化為證明以這兩條線段對應的向量的數量積為零.,,,,,證明:,如圖,已知:,求證:,在直線l上取向量,只要證,為,逆命題成立嗎?,分析:同樣可用向量,證明思路幾乎一樣,只不過其中的加法運算用減法運算來分析.,分析:要證明一條直線與一個平面垂直,由直線與平面垂直的定義可知,就是要證明這條直線與平面內的任意一條直線都垂直.,,例:(試用向量方法證明直線與平面垂直的判定定理)已知直線m,n是平面內的兩條相交直線,如果⊥m,⊥n,求證:⊥.,,,,m,n,,,,,,取已知平面內的任一條直線g,拿相關直線的方向向量來分析,看條件可以轉化為向量的什么條件?要證的目標可以轉化為向量的什么目標?怎樣建立向量的條件與向量的目標的聯(lián)系?,,例:已知直線m,n是平面內的兩條相交直線,如果⊥m,⊥n,求證:⊥.,,證明:因為,所以,同理,,小結:通過學習,體會到我們可以利用向量數量積解決立體幾何中的以下問題:1、證明兩直線垂直;2、求兩點之間的距離或線段長度;(3、證明線面垂直;)4、求兩直線所成角的余弦值等等.,再見!,再見!,再見!,同學們,來學校和回家的路上要注意安全,同學們,來學校和回家的路上要注意安全,- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 空間向量的數量積 數學 空間 向量 數量 課件
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.kudomayuko.com/p-12623157.html