2018-2019學(xué)年高中數(shù)學(xué) 第二章 幾個(gè)重要的不等式 3.1 數(shù)學(xué)歸納法課件 北師大版選修4-5.ppt
《2018-2019學(xué)年高中數(shù)學(xué) 第二章 幾個(gè)重要的不等式 3.1 數(shù)學(xué)歸納法課件 北師大版選修4-5.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018-2019學(xué)年高中數(shù)學(xué) 第二章 幾個(gè)重要的不等式 3.1 數(shù)學(xué)歸納法課件 北師大版選修4-5.ppt(24頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第二章3數(shù)學(xué)歸納法與貝努利不等式,3.1數(shù)學(xué)歸納法,,學(xué)習(xí)目標(biāo)1.了解數(shù)學(xué)歸納法的基本原理.2.了解數(shù)學(xué)歸納法的應(yīng)用范圍.3.會(huì)用數(shù)學(xué)歸納法證明一些簡(jiǎn)單問(wèn)題.,,,問(wèn)題導(dǎo)學(xué),達(dá)標(biāo)檢測(cè),,題型探究,內(nèi)容索引,問(wèn)題導(dǎo)學(xué),知識(shí)點(diǎn)數(shù)學(xué)歸納法,在學(xué)校,我們經(jīng)常會(huì)看到這樣的一種現(xiàn)象:排成一排的自行車,如果一個(gè)同學(xué)將第一輛自行車不小心弄倒了,那么整排自行車就會(huì)倒下.,思考1試想要使整排自行車倒下,需要具備哪幾個(gè)條件?,答案①第一輛自行車倒下;②任意相鄰的兩輛自行車,前一輛倒下一定導(dǎo)致后一輛倒下.,思考2由這種思想方法所得的數(shù)學(xué)方法叫數(shù)學(xué)歸納法,那么,數(shù)學(xué)歸納法適用于解決哪類問(wèn)題?,答案適合解決一些與正整數(shù)n有關(guān)的問(wèn)題.,梳理數(shù)學(xué)歸納法的概念及步驟(1)數(shù)學(xué)歸納法的定義一般地,當(dāng)要證明一個(gè)命題對(duì)于不小于某正整數(shù)n0的所有正整數(shù)n都成立時(shí),可以用以下兩個(gè)步驟:①證明當(dāng)時(shí)命題成立;②假設(shè)當(dāng)____________________時(shí)命題成立,證明當(dāng)時(shí)命題也成立.在完成了這兩個(gè)步驟后,就可以斷定命題對(duì)于不小于n0的所有正整數(shù)都成立.這種證明方法稱為數(shù)學(xué)歸納法.,n=n0,n=k+1,n=k(k∈N+,且k≥n0),(2)數(shù)學(xué)歸納法適用范圍數(shù)學(xué)歸納法的適用范圍僅限于與有關(guān)的數(shù)學(xué)命題的證明.(3)數(shù)學(xué)歸納法的基本過(guò)程,正整數(shù),題型探究,類型一用數(shù)學(xué)歸納法證明等式,(2)假設(shè)當(dāng)n=k(k≥1,k∈N+)時(shí),等式成立,,證明,即當(dāng)n=k+1時(shí),等式也成立.由(1)(2)可知,原等式對(duì)n∈N+均成立.,反思與感悟利用數(shù)學(xué)歸納法證明代數(shù)恒等式時(shí)要注意兩點(diǎn):一是要準(zhǔn)確表述n=n0時(shí)命題的形式,二是要準(zhǔn)確把握由n=k到n=k+1時(shí),命題結(jié)構(gòu)的變化特點(diǎn).并且一定要記?。涸谧C明n=k+1成立時(shí),必須使用歸納假設(shè).,證明,(2)假設(shè)當(dāng)n=k(k≥1,k∈N+)時(shí),等式成立,,當(dāng)n=k+1時(shí),12+22+32+…+k2+(k+1)2,所以當(dāng)n=k+1時(shí)等式也成立.由(1)(2)可知,等式對(duì)任何n∈N+都成立.,類型二證明與整除有關(guān)的問(wèn)題,例2求證:x2n-y2n(n∈N+)能被x+y整除.,證明,證明(1)當(dāng)n=1時(shí),x2-y2=(x+y)(x-y)能被x+y整除.(2)假設(shè)n=k(k≥1,k∈N+)時(shí),x2k-y2k能被x+y整除,那么當(dāng)n=k+1時(shí),x2k+2-y2k+2=x2x2k-y2y2k-x2y2k+x2y2k=x2(x2k-y2k)+y2k(x2-y2).∵x2k-y2k與x2-y2都能被x+y整除,∴x2(x2k-y2k)+y2k(x2-y2)能被x+y整除.即當(dāng)n=k+1時(shí),x2k+2-y2k+2能被x+y整除.由(1)(2)可知,對(duì)任意正整數(shù)n,命題均成立.,反思與感悟利用數(shù)學(xué)歸納法證明整除問(wèn)題時(shí),關(guān)鍵是整理出除數(shù)因式與商數(shù)因式積的形式.這往往要利用“添項(xiàng)”與“減項(xiàng)”“因式分解”等變形技巧來(lái)湊出n=k時(shí)的情形,從而利用歸納假設(shè)使問(wèn)題得證.,跟蹤訓(xùn)練2用數(shù)學(xué)歸納法證明:n3+(n+1)3+(n+2)3能被9整除(n∈N+).,證明,證明(1)當(dāng)n=1時(shí),13+23+33=36能被9整除,所以結(jié)論成立.(2)假設(shè)當(dāng)n=k(k∈N+,k≥1)時(shí)結(jié)論成立,即k3+(k+1)3+(k+2)3能被9整除.則當(dāng)n=k+1時(shí),(k+1)3+(k+2)3+(k+3)3=[k3+(k+1)3+(k+2)3]+[(k+3)3-k3]=[k3+(k+1)3+(k+2)3]+9k2+27k+27=[k3+(k+1)3+(k+2)3]+9(k2+3k+3).因?yàn)閗3+(k+1)3+(k+2)3能被9整除,9(k2+3k+3)也能被9整除,所以(k+1)3+(k+2)3+(k+3)3也能被9整除,即當(dāng)n=k+1時(shí)結(jié)論也成立.由(1)(2)知,命題對(duì)一切n∈N+成立.,達(dá)標(biāo)檢測(cè),1,2,4,3,解析邊數(shù)最少的凸n邊形為三角形,故n0=3.,1.用數(shù)學(xué)歸納法證明“凸n邊形的內(nèi)角和等于(n-2)π”時(shí),歸納奠基中n0的取值應(yīng)為A.1B.2C.3D.4,答案,解析,√,1,2,4,3,解析當(dāng)n=1時(shí),n+1=2,故左邊所得的項(xiàng)為1+a+a2.,A.1B.1+a+a2C.1+aD.1+a+a2+a3,答案,解析,√,1,2,4,3,解析34(k+1)+1+52(k+1)+1=34k+5+52k+3=8134k+1+2552k+1=8134k+1+8152k+1-5652k+1=81(34k+1+52k+1)-5652k+1.,3.用數(shù)學(xué)歸納法證明34n+1+52n+1(n∈N)能被8整除,當(dāng)n=k+1時(shí),34(k+1)+1+52(k+1)+1應(yīng)變形為_(kāi)__________________________________________________________.,答案,解析,81(34k+1+52k+1)-5652k+1(或25(34k+1+52k+1)+,5634k+1),1,2,4,3,證明(1)當(dāng)n=1時(shí),左邊=1,右邊=1,等式成立.(2)假設(shè)當(dāng)n=k(k≥1,k∈N+)時(shí),等式成立,即1+3+…+(2k-1)=k2,那么,當(dāng)n=k+1時(shí),1+3+…+(2k-1)+[2(k+1)-1]=k2+[2(k+1)-1]=k2+2k+1=(k+1)2.所以當(dāng)n=k+1時(shí)等式成立.由(1)(2)可知,等式對(duì)任意正整數(shù)n都成立.,4.用數(shù)學(xué)歸納法證明1+3+…+(2n-1)=n2(n∈N+).,證明,規(guī)律與方法,1.應(yīng)用數(shù)學(xué)歸納法時(shí)應(yīng)注意的問(wèn)題(1)第一步中的驗(yàn)證,對(duì)于有些問(wèn)題驗(yàn)證的并不是n=1,有時(shí)需驗(yàn)證n=2,n=3.(2)對(duì)n=k+1時(shí)式子的項(xiàng)數(shù)以及n=k與n=k+1的關(guān)系的正確分析是應(yīng)用數(shù)學(xué)歸納法成功證明問(wèn)題的保障.(3)“假設(shè)n=k時(shí)命題成立,利用這一假設(shè)證明n=k+1時(shí)命題成立”,這是應(yīng)用數(shù)學(xué)歸納法證明問(wèn)題的核心環(huán)節(jié),對(duì)待這一推導(dǎo)過(guò)程決不可含糊不清,推導(dǎo)的步驟要完整、嚴(yán)謹(jǐn)、規(guī)范.,2.判斷利用數(shù)學(xué)歸納法證明問(wèn)題是否正確(1)要看有無(wú)歸納奠基.(2)證明當(dāng)n=k+1時(shí)是否應(yīng)用了歸納假設(shè).3.與n有關(guān)的整除問(wèn)題一般都用數(shù)學(xué)歸納法證明.其中關(guān)鍵問(wèn)題是從當(dāng)n=k+1時(shí)的表達(dá)式中分解出n=k時(shí)的表達(dá)式與一個(gè)含除式的因式或幾個(gè)含除式的因式,這樣才能得出結(jié)論成立.,本課結(jié)束,,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2018-2019學(xué)年高中數(shù)學(xué) 第二章 幾個(gè)重要的不等式 3.1 數(shù)學(xué)歸納法課件 北師大版選修4-5 2018 2019 學(xué)年 高中數(shù)學(xué) 第二 幾個(gè) 重要 不等式 數(shù)學(xué) 歸納法 課件 北師大 選修
鏈接地址:http://m.kudomayuko.com/p-12697810.html