《河南省洛陽(yáng)市 高三第二次統(tǒng)一考試數(shù)學(xué)文科》由會(huì)員分享,可在線閱讀,更多相關(guān)《河南省洛陽(yáng)市 高三第二次統(tǒng)一考試數(shù)學(xué)文科(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 中小學(xué)教育資源站(),百萬(wàn)資源免費(fèi)下載,無(wú)須注冊(cè)!
河南省洛陽(yáng)市2008-2009學(xué)年高三第二次統(tǒng)一考試
數(shù)學(xué)(文科)試題
第Ⅰ卷(選擇題,共60分)
一.選擇題:本題共12個(gè)小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合 符合要求的。
.設(shè)集合,,則
A. B. C. D.
.二項(xiàng)式的展開(kāi)式中的常數(shù)項(xiàng)等于
A. B. C. D.
.已知.滿足約束條件,則的最小值為
A. B. C. D.
.設(shè).是兩條不同的直線,.是兩
2、個(gè)不同的平面,下列命題正確的是
A.,,
B.,,
C.,,
D.,,
.球面上有三個(gè)點(diǎn),其中任意兩點(diǎn)的球面距離都等于大圓周長(zhǎng)的,經(jīng)過(guò)這三個(gè)點(diǎn)的小圓的周長(zhǎng)為,則這個(gè)球的表面積為
A. B. C. D.
.若等差數(shù)列的前項(xiàng)和為,若,則的值為
A. B. C. D.
.某科技小組有名同學(xué),現(xiàn)從中選人去參觀展覽,若至少有名女生入選時(shí)的不同選法有種,則小組中的女生數(shù)目為
A. B. C. D.
.函數(shù)在上恒有,則的取值范圍是
A
3、.或 B.
C.或 D.或
.已知向量,。若,且..為的三個(gè)內(nèi)角,則角的值為
A. B. C. D.
.已知圓關(guān)于軸對(duì)稱,經(jīng)過(guò)點(diǎn),且被軸分成兩段弧長(zhǎng)之比為,則圓的方程為
A. B.
C. D.
.函數(shù)圖像上一點(diǎn),以為切點(diǎn)的切線的傾斜角范圍是
A. B.
C. D.
.已知是定義在上偶函數(shù),且恒成立,當(dāng)時(shí),,則當(dāng)時(shí),為
A. B. C. D.
第
4、Ⅱ卷(選擇題,共90分)
二.填空題:本大題共4個(gè)小題,每小題5分,共20分。把答案填在題中橫線上。
.在個(gè)產(chǎn)品中,一等品個(gè),二等品個(gè),三等品個(gè),用分層抽樣的方法抽取一個(gè)容量為的樣本,則二等品中產(chǎn)品被抽到的概率為 。
.設(shè)函數(shù),若,則 。
.函數(shù)圖象與的圖象關(guān)于直線對(duì)稱,若圖象過(guò)點(diǎn),則的值為 。
.已知拋物線,過(guò)點(diǎn)的直線與拋物線交于和兩點(diǎn),則的最不值是 。
三.解答題:本大題共6個(gè)小題,共70分,解答題應(yīng)寫(xiě)出文字說(shuō)明.證明過(guò)程和演算步驟。
.(本小題滿分10分)
已知函數(shù)。
(1) 求的周期
5、和最大值;
(2) 求的單調(diào)減區(qū)間。
.(本小題滿分12分)
甲.乙兩名同學(xué)進(jìn)行乒乓球單打比賽,根據(jù)以往經(jīng)驗(yàn),單局比賽甲勝乙的概率為,
本場(chǎng)比賽采用三局三勝制,即先勝三局者獲勝,比賽結(jié)束.設(shè)各局比賽相互沒(méi)有影響.
(1)求本場(chǎng)比賽的總局?jǐn)?shù)為的事件的概率;
(2)求本場(chǎng)比賽中甲獲勝的事件的概率。
.(本小題滿分12分)
已知正三棱柱的底面邊長(zhǎng)和側(cè)棱長(zhǎng)均為,為棱的中點(diǎn)。
(1) 證明:;
(2) 求平面與平面
所成二面角大小。
.(本小題滿分12分)
已知數(shù)列滿足 ,且。
(1) 求數(shù)列的通項(xiàng)公式;
(2) 求數(shù)列的前項(xiàng)和;
6、
.(本小題滿分12分)
設(shè),其導(dǎo)函數(shù)的圖象經(jīng)過(guò)點(diǎn)和,且在時(shí)取得極小值
(1) 求的解析式;
(2) 若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍。
.(本小題滿分12分)
已知橢圓的方程為,雙曲線的左.右焦點(diǎn)分別為的左.右頂點(diǎn),而且的左.右頂點(diǎn)分別是的左.右焦點(diǎn)。
(1) 求雙曲線的方程;
(2) 若直線:與雙曲線恒有兩個(gè)不同的交點(diǎn).,且(為坐標(biāo)原點(diǎn)),求的取值范圍。
參考答案
一.選擇題 CAADD ABDAB CB
二.填空題 . . . .
三.解答題
.
7、
的周期為,最大值為.
令,
得,.
∴的單調(diào)減區(qū)間為.
.事件,表示甲以獲勝;表示乙以獲勝,.互斥,
∴
.
事件,表示甲以獲勝;表示甲以獲勝, .互斥,
∴
延長(zhǎng).交于,則.
連結(jié),并延長(zhǎng)交延長(zhǎng)線于,則,,
在中,為中位線,,
又,
∴.
∵中,,
∴.
即,又,,
∴,∴,
∴為平面與平面所成二面角的平面角。
又,
∴所求二面角大
8、小為.
.由,,
知,,同理,.
又,
∴構(gòu)成以為首項(xiàng),以為公比的等比數(shù)列。
∴,即.
.
.,且的圖象經(jīng)過(guò)點(diǎn)和,
∴,為的兩根.
∴
∴
由
解得
∴
要使對(duì),不等式恒成立,
只需即可.
∵,
∴在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.
又,,
∴,
∴,
解得,即為的取值范圍.
.由題意知,橢圓的焦點(diǎn),,頂點(diǎn),,
∴雙曲線中,,.
∴的方程為:.
聯(lián)立,得,
∴
且,
設(shè),,
則,
∴.
又,即,
∴,
即.
∴,
,
由①②得的范圍為.
中小學(xué)教育資源站