《四年級(jí)數(shù)學(xué)奧數(shù)習(xí)題講義《定義新運(yùn)算》》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《四年級(jí)數(shù)學(xué)奧數(shù)習(xí)題講義《定義新運(yùn)算》(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、1四年級(jí)數(shù)學(xué)奧數(shù)習(xí)題講義-第二十三周 定義新運(yùn)算專(zhuān)題簡(jiǎn)析:我們學(xué)過(guò)常用的運(yùn)算加、減、乘、除等,如 62=8,62=12等.都是 2 和 6,為什么運(yùn)算結(jié)果不同呢?主要是運(yùn)算方式不同,實(shí)質(zhì)上是對(duì)應(yīng)法則不同.由此可見(jiàn),一種運(yùn)算實(shí)際就是兩個(gè)數(shù)與一個(gè)數(shù)的一種對(duì)應(yīng)方法.對(duì)應(yīng)法則不同就是不同的運(yùn)算.當(dāng)然,這個(gè)對(duì)應(yīng)法則應(yīng)該是對(duì)應(yīng)任意兩個(gè)數(shù).通過(guò)這個(gè)法則都有一個(gè)唯一確定的數(shù)與它們對(duì)應(yīng).這一周,我們將定義一些新的運(yùn)算形式,它們與我們常用的加、減、乘、除運(yùn)算是不相同的.2例 1:設(shè) a、b 都表示數(shù),規(guī)定:ab 表示 a 的 3 倍減去 b 的 2 倍,即:ab=a3b2.試計(jì)算:(1)56;(2)65.分析與解
2、答:解這類(lèi)題的關(guān)鍵是抓住定義的本質(zhì).這道題規(guī)定的運(yùn)算本質(zhì)是:運(yùn)算符號(hào)前面的數(shù)的 3 倍減去符號(hào)后面的數(shù)的 2 倍.(1)56=5362=3(2)65=6352=8顯然,本例定義的運(yùn)算不滿(mǎn)足交換律,計(jì)算中不能將前后的數(shù)交換.練 習(xí) 一1,設(shè) a、b 都表示數(shù),規(guī)定:ab=6a2b.試計(jì)算 34.2,設(shè) a、b 都表示數(shù),規(guī)定:a*b=3a2b.試計(jì)算:(1)(5*6)*7 (2)5*(6*7)3,有兩個(gè)整數(shù)是 A、B,AB 表示 A 與 B 的平均數(shù).已知 A6=17,求 A.3例 2:對(duì)于兩個(gè)數(shù) a 與 b,規(guī)定 ab=abab,試計(jì)算 62.分析與解答:這道題規(guī)定的運(yùn)算本質(zhì)是:用運(yùn)算符號(hào)前后
3、兩個(gè)數(shù)的積加上這兩個(gè)數(shù).62=6262=20練 習(xí) 二1,對(duì)于兩個(gè)數(shù) a 與 b,規(guī)定:ab=ab(ab).計(jì)算 35.2,對(duì)于兩個(gè)數(shù) A 與 B,規(guī)定:AB=AB2.試算 64.3,對(duì)于兩個(gè)數(shù) a 與 b,規(guī)定:ab=abab.如果 5x=29,求 x.4例 3:如果 23=234,54=5678,按此規(guī)律計(jì)算 35.分析與解答:這道題規(guī)定的運(yùn)算本質(zhì)是:從運(yùn)算符號(hào)前的數(shù)加起,每次加的數(shù)都比前面的一個(gè)數(shù)多 1,加數(shù)的個(gè)數(shù)為運(yùn)算符號(hào)后面的數(shù).所以,35=34567=25練 習(xí) 三1,如果 52=26,23=234,計(jì)算:3.2,如果 24=24(24),36=36(36),計(jì)算 84.3,如果
4、23=234,54=5678,且 1x=15,求 x.5例 4:對(duì)于兩個(gè)數(shù) a 與 b,規(guī)定 ab=a(a+1)+(a+2)+(a+b1).已知x6=27,求 x.分析與解答:經(jīng)仔細(xì)分析,可以發(fā)現(xiàn)這道題規(guī)定運(yùn)算的本質(zhì)仍然是:從運(yùn)算符號(hào)前面的數(shù)加起,每次加的數(shù)都比它相鄰的前一個(gè)數(shù)多 1,加數(shù)的個(gè)數(shù)為運(yùn)算符號(hào)后面的數(shù),原式即 x+(x+1)+(x+2)+(x+5)=27,解這個(gè)方程,即可求出 x=2.練 習(xí) 四1,如果 23=234=9,65=678910=40.已知 x3=5973,求 x.2,對(duì)于兩個(gè)數(shù) a 與 b,規(guī)定 ab=a+(a+1)+(a+2)+(a+b1),已知 95x=585,求 x.3,如果 1!=1,2!=12=2,3!=123=6,按此規(guī)律計(jì)算 5!.6例 5:24=8,53=13,35=11,97=25.按此規(guī)律計(jì)算:.分析與解答:仔細(xì)觀(guān)察和分析這幾個(gè)算式,可以發(fā)現(xiàn)下面的規(guī)律:ab=2a+b,依此規(guī)律:73=723=17.練 習(xí) 五1,有一個(gè)數(shù)學(xué)運(yùn)算符號(hào)“”,使下列算式成立:62=12,43=13,34=15,51=8.按此規(guī)律計(jì)算:84.2,有一個(gè)數(shù)學(xué)運(yùn)算符號(hào)“”使下列算式成立:216332,6542671,54451197.按此規(guī)律計(jì)算:83112.3,對(duì)于兩個(gè)數(shù) a、b,規(guī)定 ab=bxa2,并且已知 8265=31,計(jì)算:2957.