2013年全國高考數(shù)學(xué)第二輪復(fù)習(xí) 專題三 三角函數(shù)及解三角形第2講 三角恒等變換及解三角形 文
《2013年全國高考數(shù)學(xué)第二輪復(fù)習(xí) 專題三 三角函數(shù)及解三角形第2講 三角恒等變換及解三角形 文》由會員分享,可在線閱讀,更多相關(guān)《2013年全國高考數(shù)學(xué)第二輪復(fù)習(xí) 專題三 三角函數(shù)及解三角形第2講 三角恒等變換及解三角形 文(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、專題三 三角函數(shù)及解三角形第2講 三角恒等變換及解三角形 真題試做 1.(2012·廣東高考,文6)在△ABC中,若∠A=60°,∠B=45°,BC=3,則AC=( ). A.4 B.2 C. D. 2.(2012·上海高考,文17)在△ABC中,若sin2A+sin2B<sin2C,則△ABC的形狀是( ). A.鈍角三角形 B.直角三角形 C.銳角三角形 D.不能確定 3.(2012·江西高考,文4)若=,則tan 2α=( ). A.- B. C.- D. 4.(2012·重慶高考,
2、文5)=( ). A.- B.- C. D. 考向分析 本部分主要考查三角函數(shù)的基本公式,三角恒等變形及解三角形等基本知識.近幾年高考題目中每年有1~2個小題,一個大題,解答題以中低檔題為主,很多情況下與平面向量綜合考查,有時也與不等式、函數(shù)最值結(jié)合在一起,但難度不大,而三角函數(shù)與解三角形相結(jié)合,更是考向的主要趨勢.三角恒等變換是高考的熱點內(nèi)容,主要考查利用各種三角函數(shù)進行求值與化簡,其中降冪公式、輔助角公式是考查的重點,切化弦、角的變換是常考的三角變換思想.正弦定理、余弦定理以及解三角形問題是高考的必考內(nèi)容,主要考查:①邊和角的計算;②三角形形狀的判斷;③面積的計
3、算;④有關(guān)的范圍問題.由于此內(nèi)容應(yīng)用性較強,與實際問題結(jié)合起來命題將是今后高考的一個關(guān)注點,不可小視. 熱點例析 熱點一 三角恒等變換及求值 【例1】(2012·山東淄博一模,17)已知函數(shù)f(x)=2cos2-sin x. (1)求函數(shù)f(x)的最小正周期和值域; (2)若α為第二象限角,且f=,求的值. 規(guī)律方法 明確“待求和已知三角函數(shù)間的差異”是解決三角函數(shù)化簡、求值、證明問題的關(guān)鍵.三角恒等變換的常用策略有: (1)常值代換:特別是“1”的代換,1=sin2θ+cos2θ=tan 45°等. (2)項的分拆與角的配湊: ①二倍角只是個相對概念,如是的二倍角,α+
4、β是的二倍角等; ②=-,α=(α-β)+β等; ③熟悉公式的特點,正用或逆用都要靈活,特別對以下幾種變形更要牢記并會靈活運用: 1±sin 2α=sin2α+cos2α±2sin αcos α=(sin α±cos α)2,cos α=等. (3)降冪與升冪:正用二倍角公式升冪,逆用二倍角公式降冪. (4)角的合成及三角函數(shù)名的統(tǒng)一:asin α+bcos α=sin(α+φ). 變式訓(xùn)練1 (2012·山東濟寧模擬,17)已知函數(shù)f(x)=sin ωx-cos ωx(x∈R,ω>0)的最小正周期為6π. (1)求f的值; (2)設(shè)α,β∈,f=-,f(3β+2π)=,求co
5、s(α+β)的值. 熱點二 三角函數(shù)、三角形與向量等知識的交會 【例2】(2012·山東煙臺適用性測試一,理17)在銳角三角形ABC中,a,b,c分別是角A,B,C的對邊,m=(2b-c,cos C),n=(a,cos A),且m∥n. (1)求角A的大小; (2)求函數(shù)y=2sin2B+cos的值域. 規(guī)律方法 以解三角形為命題形式考查三角函數(shù)是“眾望所歸”:正、余弦定理的應(yīng)用,難度適中,運算量適度,方向明確(化角或化邊).(1)利用正弦定理,將角化為邊時,實際上是把角的正弦替換為所對邊與外接圓直徑的比值.(2)求角的大小一定要有兩個條件:①是角的范圍;②是角的某一三角函數(shù)值.用三
6、角函數(shù)值判斷角的大小時,一定要注意角的范圍及三角函數(shù)的單調(diào)性的應(yīng)用.(3)三角形的內(nèi)角和為π,這是三角形中三角函數(shù)問題的特殊性.在三角形中,任意兩角和與第三個角總互補,任意兩半角和與第三個角的半角總互余.銳角三角形?三內(nèi)角都是銳角?三內(nèi)角的余弦值均為正值?任意兩角的和都是鈍角?任意兩邊的平方和大于第三邊的平方. 變式訓(xùn)練2 (2012·湖北武漢4月調(diào)研,18)在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-. (1)求cos C的值; (2)若a=5,求△ABC的面積. 熱點三 正、余弦定理的實際應(yīng)用 【例3】某城市有一條公路,自西向東經(jīng)過A點到
7、市中心O點后轉(zhuǎn)向東北方向OB.現(xiàn)要修建一條鐵路L,L在OA上設(shè)一站A,在OB上設(shè)一站B,鐵路在AB部分為直線段.現(xiàn)要求市中心O與AB的距離為10 km,問把A,B分別設(shè)在公路上離市中心O多遠處才能使A,B之間的距離最短?并求最短距離.(結(jié)果保留根號) 規(guī)律方法 (1)三角形應(yīng)用題主要是解決三類問題:測高度、測距離和測角度. (2)在解三角形時,要根據(jù)具體的已知條件合理選擇解法,同時,不可將正弦定理與余弦定理割裂開來,有時需綜合運用. (3)在解決與三角形有關(guān)的實際問題時,首先要明確題意,正確畫出平面圖形或空間圖形,然后根據(jù)條件和圖形特點將問題歸納到三角形中解決.要明確先用哪個公式或定
8、理,先求哪些量,確定解三角形的方法.在演算過程中,要算法簡練、算式工整、計算正確,還要注意近似計算的要求. (4)在畫圖和識圖過程中要準(zhǔn)確理解題目中所涉及的幾種角,如仰角、俯角、方位角,以防出錯. (5)有些時候也必須注意到三角形的特殊性,如直角三角形、等腰三角形、銳角三角形等. 變式訓(xùn)練3 如圖,一船在海上自西向東航行,在A處測得某島M的方位角為北偏東α,前進m km后在B處測得該島的方位角為北偏東β,已知該島周圍n km范圍內(nèi)(包括邊界)有暗礁,現(xiàn)該船繼續(xù)東行.當(dāng)α與β滿足條件__________時,該船沒有觸礁危險. 思想滲透 化歸轉(zhuǎn)化思想——解答三角恒等變換問題 求解恒
9、等變換問題的思路: 一角二名三結(jié)構(gòu),即用化歸轉(zhuǎn)化的思想“去異求同”的過程,具體分析如下: (1)變角:首先觀察角與角之間的關(guān)系,注意角的一些常用變換形式,角的變換是三角函數(shù)變換的核心; (2)變名:其次看函數(shù)名稱之間的關(guān)系,通?!扒谢摇保T導(dǎo)公式的運用; (3)結(jié)構(gòu):再次觀察代數(shù)式的結(jié)構(gòu)特點,降冪與升冪,巧用“1”的代換等. (2012·福建高考,文20)某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù): ①sin213°+cos217°-sin 13°cos 17°; ②sin215°+cos215°-sin 15°cos 15°; ③sin218°+cos2
10、12°-sin 18°cos 12°; ④sin2(-18°)+cos248°-sin(-18°)cos 48°; ⑤sin2(-25°)+cos255°-sin(-25°)cos 55°. (1)試從上述五個式子中選擇一個,求出這個常數(shù); (2)根據(jù)(1)的計算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論. 解法一:(1)選擇②式,計算如下: sin215°+cos215°-sin 15°cos 15°=1-sin 30°=1-=. (2)三角恒等式為sin2α+cos2(30°-α)-sin αcos(30°-α)=. 證明如下: sin2α+cos2(30°-α
11、)-sin αcos(30°-α) =sin2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α) =sin2α+cos2α+sin αcos α+sin2α-sin αcos α-sin2α=sin2α+cos2α=. 解法二:(1)同解法一. (2)三角恒等式為sin2α+cos2(30°-α)-sin αcos(30°-α)=. 證明如下: sin2α+cos2(30°-α)-sin αcos(30°-α) =+-sin α(cos 30°cos α+sin 30°sin α) =-cos 2α++
12、(cos 60°cos 2α+sin 60°sin 2α)-sin αcos α-sin2α =-cos 2α++cos 2α+sin 2α-sin 2α-(1-cos 2α) =1-cos 2α-+cos 2α=. 1.已知cos x-sin x=-,則sin=( ). A. B.- C. D.- 2.在△ABC中,如果0<tan Atan B<1,那么△ABC是( ). A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不能確定 3.(2012·山東煙臺適用性測試一,5)已知傾斜角為α的直線l與直線x-2y+2=0
13、平行,則tan 2α的值為( ). A. B. C. D. 4.(2012·江西南昌二模,5)已知cos=-,則cos x+cos的值是( ). A.- B.± C.-1 D.±1 5.(2012·山東淄博一模,10)在△ABC中,已知bcos C+ccos B=3acos B,其中a,b,c分別為角A,B,C的對邊,則cos B的值為( ). A. B.- C. D.- 6.(原創(chuàng)題)已知sin x=,則sin 2=______. 7.(2012·湖南長沙模擬,18)已知函數(shù)f(x)=3
14、sin2x+2sin xcos x+5cos2x. (1)若f(α)=5,求tan α的值; (2)設(shè)△ABC三內(nèi)角A,B,C所對的邊分別為a,b,c,且=,求f(x)在(0,B]上的值域. 8.(2012·廣東廣州二模,16)已知函數(shù)f(x)=Asin(A>0,ω>0)在某一個周期內(nèi)的圖象的最高點和最低點的坐標(biāo)分別為,. (1)求A和ω的值; (2)已知α∈,且sin α=,求f(α)的值. 參考答案 命題調(diào)研·明晰考向 真題試做 1.B 解析:由正弦定理得=,即=,解得AC=2. 2.A 解析:由sin2A+sin2B<sin2C,得a2+b2<c2, 所以cos C
15、=<0,所以∠C為鈍角, 即△ABC為鈍角三角形. 3.B 解析:因為=, 所以=,解方程得tan α=-3. 于是根據(jù)倍角公式可得tan 2α==,故選B. 4.C 解析:因為sin 47°=sin(30°+17°)=sin 30°cos 17°+sin 17°cos 30°,所以原式==sin 30°=,故選C. 精要例析·聚焦熱點 熱點例析 【例1】解:(1)∵f(x)=1+cos x-sin x =1+2cos, ∴函數(shù)f(x)的最小正周期為2π. 又∵-1≤cos≤1, ∴函數(shù)f(x)的值域為[-1,3]. (2)∵f=, ∴1+2cos α=,即cos
16、α=-. ∵= ==, 又∵α為第二象限角,且cos α=-, ∴sin α=. ∴原式===. 【變式訓(xùn)練1】解:(1)f(x)=sin ωx-cos ωx =2 =2sin. ∵函數(shù)f(x)的最小正周期為6π, ∴T==6π,即ω=. ∴f(x)=2sin. ∴f=2sin=2sin=. (2)f=2sin=2sin α=-, ∴sin α=-. f(3β+2π)=2sin=2sin=2cos β=, ∴cos β=. ∵α,β∈, ∴cos α==, sin β=-=-. ∴cos(α+β)=cos αcos β-sin αsin β=×-×=.
17、 【例2】解:(1)由m∥n,得(2b-c)cos A-acos C=0, ∴(2sin B-sin C)cos A-sin Acos C=0, 2sin Bcos A=sin Ccos A+sin Acos C =sin(A+C)=sin(π-B)=sin B. 在銳角三角形ABC中,sin B>0, ∴cos A=,故A=. (2)在銳角三角形ABC中,A=, 故<B<. ∴y=2sin2B+cos=1-cos 2B+cos 2B+sin 2B =1+sin 2B-cos 2B=1+sin. ∵<B<,∴<2B-<. ∴<sin≤1,<y≤2. ∴函數(shù)y=2sin2
18、B+cos的值域為. 【變式訓(xùn)練2】解:(1)在△ABC中,由cos(B+C)=-,得 sin(B+C)===, ∴cos C=cos [(B+C)-B]=cos(B+C)cos B+sin(B+C)sin B =-×+×=. (2)由(1),得sin C===, sin A=sin(B+C)=. 在△ABC中,由正弦定理=,得 =,∴c=8. 故△ABC的面積為S=acsin B=×5×8×=10. 【例3】解:在△AOB中,設(shè)OA=a,OB=b. 因為OA為正西方向,OB為東北方向, 所以∠AOB=135°. 又O到AB的距離為10, 所以S△ABO=absin
19、 135°=|AB|·10,得|AB|=ab. 設(shè)∠OAB=α,則∠OBA=45°-α. 因為a=,b=, 所以ab=·= == =≥. 當(dāng)且僅當(dāng)α=22°30′時,“=”成立. 所以|AB|≥×=20(+1). 當(dāng)且僅當(dāng)α=22°30′時,“=”成立. 所以,當(dāng)a=b==10時, A,B之間的距離最短,且最短距離為20(+1)km. 即當(dāng)A,B分別在OA,OB上離市中心O 10km處時,能使A,B之間的距離最短,最短距離為20(+1)km. 【變式訓(xùn)練3】mcos αcos β>nsin(α-β) 解析:∠MAB=90°-α,∠MBC=90°-β=∠MAB+∠AMB=
20、90°-α+∠AMB, 所以∠AMB=α-β. 由題可知,在△ABM中,根據(jù)正弦定理得=,解得BM=.要使船沒有觸礁危險,需要BMsin(90°-β)=>n,所以α與β滿足mcos αcos β>nsin(α-β)時,該船沒有觸礁危險. 創(chuàng)新模擬·預(yù)測演練 1.B 解析:由cos x-sin x=2 =2=2sin, 可得sin=-. 2.C 解析:由題意0<A<π,0<B<π,tan Atan B>0,則A,B兩角為銳角, 又tan(A+B)=>0,則A+B為銳角,則角C為鈍角,故選C. 3.B 解析:已知傾斜角為α的直線l與直線x-2y+2=0平行, 則tan α=,t
21、an 2α===. 4.C 解析:cos x+cos=cos x+cos xcos+sin xsin =cos x+sin x=cos=×=-1. 5.A 解析:因為bcos C+ccos B=3acos B, 所以sin Bcos C+cos Bsin C=3sin Acos B, 即sin(B+C)=3sin Acos B,即cos B=. 6.2- 解析:sin 2=sin=-cos 2x =-(1-2sin2x)=2sin2x-1 =2×2-1=3--1=2-. 7.解:(1)由f(α)=5,得3sin2α+2sin αcos α+5cos2α=5, ∴3·+sin
22、 2α+5·=5. ∴sin 2α+cos 2α=1,即sin 2α=1-cos 2α?2sin αcos α=2sin2α,∴sin α=0或tan α=. ∴tan α=0或tan α=. (2)由=,得=, 則cos B=,即B=. 又f(x)=3sin2x+2sin xcos x+5cos2x=sin 2x+cos 2x+4=2sin+4, 由0<x≤,可得≤sin≤1, 故5≤f(x)≤6,即所求值域是[5,6]. 8.解:(1)∵函數(shù)f(x)的圖象的最高點坐標(biāo)為, ∴A=2. 依題意,得函數(shù)f(x)的周期T=2=π, ∴ω==2. (2)由(1)得f(x)=2sin. ∵α∈,且sin α=, ∴cos α==. ∴sin 2α=2sin αcos α=, cos 2α=1-2sin2α=-. ∴f(α)=2sin =2=.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案