《2013年高考數(shù)學(xué) 考前沖刺大題精做 專題08 函數(shù)與導(dǎo)數(shù)基礎(chǔ)篇(學(xué)生版)》由會員分享,可在線閱讀,更多相關(guān)《2013年高考數(shù)學(xué) 考前沖刺大題精做 專題08 函數(shù)與導(dǎo)數(shù)基礎(chǔ)篇(學(xué)生版)(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2013年高考數(shù)學(xué) 考前沖刺大題精做 專題08 函數(shù)與導(dǎo)數(shù)基礎(chǔ)篇(學(xué)生版)
【2013高考會這樣考】
1、 熟練的使用導(dǎo)數(shù)的幾何意義進行解題;
2、 利用導(dǎo)數(shù)解決函數(shù)的單調(diào)區(qū)間、極值、最值,注意定義域優(yōu)先;
3、 已知函數(shù)的單調(diào)性求參數(shù)的取值范圍,注意合理的使用導(dǎo)數(shù)工具;
4、 不等式的恒成立問題,往往需要轉(zhuǎn)化為函數(shù)的最值問題進行求解.
【原味還原高考】
【高考還原1:(2012年高考(重慶理))】設(shè)其中,曲線在點處的切線垂直于軸.
(Ⅰ) 求的值;
(Ⅱ) 求函數(shù)的極值.
【高考還原2:(2012年高考(北京理))】已知函數(shù)(),.
(1)若曲線與曲線在
2、它們的交點(1,)處具有公共切線,求的值;
(2)當時,求函數(shù)的單調(diào)區(qū)間,并求其在區(qū)間上的最大值.
【高考還原3:(2012年高考(福建理))】已知函數(shù).
(Ⅰ)若曲線在點處的切線平行于軸,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)試確定的取值范圍,使得曲線上存在唯一的點,曲線在該點處的切線與曲線只有一個公共點.
【細品經(jīng)典例題】
【經(jīng)典例題1】已知函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間并求的最小值;
(2)若函數(shù)的圖象在點處的切線的傾斜角為,對于任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍;
(3)若,試猜想的一個解析式.
【經(jīng)典例題2】已知函數(shù)在處取得極小值2.
(1)
3、求函數(shù)的解析式;
(2)求函數(shù)的極值即單調(diào)區(qū)間;
(3)設(shè)函數(shù),若對于任意,總存在,使得,求實數(shù)的取值范圍.
【精選名題巧練】
【名題巧練1】設(shè)函數(shù)f(x) =x2 + bx - a·lnx.
(Ⅰ)在點(1,f(1))處的切線與y軸垂直,1是函數(shù)f(x)的一個零點,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若對任意b屬于[ - 2 ,- 1 ], 及任意x屬于(1 ,e )(e 為自然對數(shù)的底數(shù)),使得f(x)<0成立,求實數(shù)a 的取值范圍。
【名題巧練2】已知,直線與函數(shù)的圖象都相切于點.
(1)求直線的方程及的解析式;
【名題巧練3】已知函數(shù)為奇函數(shù),且在處取
4、得極大值2.
(Ⅰ)求的解析式;
(Ⅱ)過點(可作函數(shù)圖像的三條切線,求實數(shù)的取值范圍;
(Ⅲ)若對于任意的恒成立,求實數(shù)的取值范圍.
【名題巧練4】已知函數(shù).
(1)若曲線在點處的切線與直線垂直,求實數(shù)的值.
(2)若,求的最小值;
(3)在(Ⅱ)上求證:.
【名題巧練5】已知函數(shù)與函數(shù)(e為自然對數(shù)的底)有公共的切線,且切點相同,。
(1)求a的值;
(2)求在區(qū)間[1,e]上的最小值。
【名題巧練6】設(shè)函數(shù),.
(1)判斷函數(shù)在上的單調(diào)性;
(2)證明:對任意正數(shù),存在正數(shù),使不等式成立.
【名題巧練7】已知函數(shù),.
(1)當時,求曲線在點處的切線方程;
(2)若在區(qū)間上是減函數(shù),求的取值范圍.