《《電流與磁場》PPT課件.ppt》由會員分享,可在線閱讀,更多相關(guān)《《電流與磁場》PPT課件.ppt(63頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第六章 恒定磁場,6-1 磁感應(yīng)強(qiáng)度,一、磁的基本現(xiàn)象,1. 磁鐵的磁性(magnetism),磁性:能吸引鐵、鈷、鎳 等物質(zhì)的性質(zhì)。,,司南勺,磁極(pole):磁性最強(qiáng)的區(qū)域, 分磁北極N和磁南極S。,磁力(magnetic force):磁極間存在相互作用,同號相斥,異號相吸。,地球是一個巨大的永磁體。,2. 電流的磁效應(yīng),1819奧斯特實驗表明:電流對磁極有力的作用,3. 磁性起源于電荷的運動,,安培電流分子(molecular current) 假說(1822年): 一切磁現(xiàn)象起源于電荷的運動 磁性物質(zhì)的分子中存在著分子電流,每個分子電流相當(dāng)于一基元磁體。 物質(zhì)的磁性取決于內(nèi)部
2、分子電流對外界磁效應(yīng)(magnetic effect)的總和。,二、磁場 磁感強(qiáng)度,磁場的對外表現(xiàn): 對磁場中運動電荷和電流有作用力。 對在磁場中運動的載流導(dǎo)線作功。,1. 磁場(magnetic field),正試驗電荷q0以速率v在場中沿不同方向運動受力不同。,定義磁感應(yīng)強(qiáng)度 :,大小:,方向:運動電荷不受力方向,且由 方向確定,單位: 特斯拉(T),2. 磁感應(yīng)強(qiáng)度(magnetic induction),a.有一特定方向運動電荷 不受到磁力;,b.與這特定方向垂直時運 動電荷受到磁力最大Fmax 且磁力方向垂直于這兩個 速方向組成的平面.,,,,,,不受力方向,,6-1 畢奧
3、-薩伐爾定律,6-1 畢奧-薩伐爾定律,一、畢奧薩伐爾定律(Biot-Savart law),靜電場:源(電荷) ,磁場:源(電流) ,真空中的磁導(dǎo)率(permeability): 0= 410-7亨利米-1(Hm-1),電流元的磁場,,,,,,,,,,,I,,,,,,,,,,a,b,c,二、畢奧薩伐爾定律應(yīng)用舉例,恒定磁場的計算: 選取電流元Idl或某些典型電流分布為積分元 由 畢-薩定律寫出積分元的磁場dB及方向 建立坐標(biāo)系,將dB分解為分量式,對每個分量積 分(統(tǒng)一變量、確定上下積分限)。分析對稱性。 求出總磁感應(yīng)強(qiáng)度大小、方向,對結(jié)果進(jìn)行分析,與點電荷電場公式比較: 相同之
4、處: 都是元場源產(chǎn)生場的公式 場強(qiáng)都與 r 2 成反比 不同之處: 公式的來源不同 方向不同,例6-1. 一長度為L的載流直導(dǎo)線,電流強(qiáng)度為I,導(dǎo)線兩端到P點的連線與導(dǎo)線的夾角分別為1和2 。求距導(dǎo)線為a處P點的磁感應(yīng)強(qiáng)度。,解:在直電流上取電流元,各電流元在P點 同向,統(tǒng)一變量:,(3) P點在導(dǎo)線的延長線上 B = 0,例6-2. 載流圓弧半徑為R,電流強(qiáng)度為I。求圓心O處的磁感強(qiáng)度。,方向垂直紙面向里,解:在圓弧上取電流元,,圓心處磁場,練習(xí):將通有電流I的導(dǎo)線彎成如圖所示的形狀, 求O點處的磁感強(qiáng)度B。,方向:垂直之面向里,例6-3. 電流均勻地流過寬度為 b
5、 的無限長平面導(dǎo)體薄板,電流為 I ,沿板長方向流動。求:在薄板平面內(nèi),距板的一邊為 b 的 P點處的磁感應(yīng)強(qiáng)度.,解:建立如圖所示坐標(biāo)系,方向垂直板面向里,例6-4.兩根長直導(dǎo)線沿半徑方向引到鐵環(huán)上A、B 兩點,并與很遠(yuǎn)的電源相連,如圖所示。求:環(huán)中心的磁感應(yīng)強(qiáng)度。,解:,R1,R2是導(dǎo)線的電阻,6-1 磁感應(yīng)線 磁通量,一、磁感應(yīng)線(magnetic induction line),條形磁鐵周圍的磁感線,直線電流的磁感線,圓電流的磁感線,通電螺線管的磁感線,均勻場,非均勻場,單位:Wb(韋伯),二、磁通量,磁通量(magnetic flux):通過磁場中某給定面的磁感線條數(shù),穿過磁場中任意
6、封閉曲面的磁通量為零,磁場是“無源場”,磁場是“渦旋場”,三、真空中磁場的高斯定理,例6-5. 無限長直導(dǎo)線通以電流I,求通過如圖所示的矩形面積的磁通量。,面積元,解:建立如圖所示的坐標(biāo)系,元通量,,6-2磁場對運動電荷和載流導(dǎo)線的作用,一、磁場對運動電荷的作用力洛侖茲力,洛侖茲力(Lorentz force)表示為:,說明: 力F方向垂直v和B確定的平面。 2. 力F改變速度v方向,不改變大小,不作功。,二、帶電粒子在磁場中的運動,1. 運動方向與磁場方向平行,結(jié)論: 帶電粒子作勻速直線運動。,2. 運動方向與磁場方向垂直,周期:,頻率:,半徑:,結(jié)論:帶電粒子在磁場中作勻速圓周運動,其周期
7、和頻率與速度無關(guān)。,運動方程:,3. 初速度沿任意方向,vy 勻速圓周運動,vx 勻速直線運動,半徑:,周期:,螺距:,結(jié)論:螺旋運動,例6-5. 一由南指向北均勻的磁場, 磁感應(yīng)強(qiáng)度B=1.5T。如果有一個5.0MeV的質(zhì)子沿豎直向下的方向通過磁場,問作用在質(zhì)子上的力有多大?(質(zhì)子質(zhì)量m=1.6710-27kg),解:,方向向東,1. 速度選擇器(selector of velocity),取得了速度選擇的目的。,三、電荷在電場和磁場中運動的實例,+,改變E與B的比值??梢赃x擇不同速度的粒子。,2. 質(zhì)譜儀(mass spectrograph),質(zhì)譜儀是研究物質(zhì)同位素的儀器。,N :離子源,
8、P:速度選擇器,3. 回旋加速器(cyclotron),回旋加速器是原子核物理、高能物理等實驗研究的一種基本設(shè)備。,通過半圓盒的時間:,, B,,,,振蕩周期:,頻率:,粒子動能:,4. 磁聚焦(magnetic focus),軸對稱磁場(短線圈) 磁透鏡(電子顯微鏡),,,,,,橫向:,在強(qiáng)磁場中可以將離子約束在小范圍,脫離器壁。,,,6. 霍爾效應(yīng)(Hall effect),方向向上,形成,動態(tài)平衡時:,(1) 現(xiàn)象:導(dǎo)體中通電流I,磁場 垂直于I,在既垂直于I,又垂直于 方向出現(xiàn)電勢差U。,令:,,RH :霍爾系數(shù),對于 n型半導(dǎo)體載流子為電子,而P型半 導(dǎo)體體載流子為 帶正電的空穴。根
9、據(jù)霍耳系 數(shù)的符號可以確定半導(dǎo)體的類型,根據(jù)霍耳 系數(shù)的大小的測定,可以確定載流子的濃度,若圖示電流由正電荷流動形成,則UH反向,由此可確定半導(dǎo)體類型。,四、安培力(Ampere force),電流元中的電子數(shù): nSdl,作用在電流元上的作用力:,洛侖茲力:,電流強(qiáng)度:,1. 載流導(dǎo)線在磁場中受力,任意形狀載流導(dǎo)線在磁場中受安培力:,實驗驗證:,計算安培力步驟:,1、沿電流方向任意選取電流元為受力對象。,2、確定該電流元所在點的 B 、寫出 dF 的表達(dá)式、并,確定 dF 的方向。,3、建立坐標(biāo),寫出 dF 的坐標(biāo)分量式 。,(若 dF 分布具有對稱性,分量式可少寫),4、統(tǒng)一 dF 分量式
10、的變量,確定積分上下限,積分得到,F 的各個坐標(biāo)分量 ,對坐標(biāo)分量進(jìn)行合成 。,5、最后可以分析結(jié)果,或許會有其它收獲。,例6-6 有一半徑為R 的半圓形導(dǎo)線,通有電流 I ,它處于一磁感應(yīng)強(qiáng)度為B 的勻強(qiáng)磁場 之中。求:安培力。,推廣: 任意載流導(dǎo)線在均勻磁場中所受的力 , 與其始點和終點相同的載流直導(dǎo)線所受的磁場力相同.,由對稱性,,例6-7. 無限長直載流導(dǎo)線通有電流I1 ,在同一平面內(nèi)有長為L的載流直導(dǎo)線,通有電流I2。如圖r、已知,求長為L的導(dǎo)線所受的磁場力。,解:建立如圖所示之坐標(biāo)系,考察I2上電流元I2dl受力,如圖所示, 在XOY平面內(nèi)有四分之一圓弧形狀的導(dǎo)線 , 半徑為R,
11、通以電流I, 處于磁感應(yīng)強(qiáng)度為,的均 勻磁場中,a為正常數(shù), 求圓弧狀導(dǎo)線所受的安培力。,練習(xí):,小結(jié):關(guān)于磁場力的計算,,,均勻磁場,不均勻磁場,,載流直導(dǎo)線在均勻磁場中所受磁力,任意載流曲線在均勻磁場中所受磁力,,載流直導(dǎo)線在不均勻磁場中所受磁力,任意載流曲線在不均勻磁場中所受磁力,,,dF,B,,dl,I,,,=,,安培定律:,B,,,,=,,L,任意載流導(dǎo)體在磁場中所受合力,外磁場,,,F1和F2形成一“力偶”,可以使線框產(chǎn)生轉(zhuǎn)動。,能使線框產(chǎn)生形變。,,2. 載流線圈在磁場中受到的磁力矩,磁矩:,磁力矩:,磁場對任意形狀彎曲導(dǎo)線的作用合力等于從起點到終點間的載有同樣電流的直導(dǎo)線所受的
12、磁場力。,在均勻磁場中,平面載流線圈的轉(zhuǎn)動趨勢是使其磁矩的方向與外磁場的方向一致,即 =0。,不同角的磁力矩、磁通量,,6-3 磁介質(zhì),能與磁場發(fā)生相互作用的物質(zhì)稱為磁介質(zhì),磁介質(zhì),被磁化,附加磁場,削弱外場,?,一、磁介質(zhì)及其磁化,設(shè)外場磁感應(yīng)強(qiáng)度B0 ,介質(zhì)磁化后附加磁場B,磁介質(zhì)中磁場:,介質(zhì)磁化的附加磁場就對應(yīng)存在磁化電流Is,磁介質(zhì)分類,順磁質(zhì)(paramagnet):r 1, BB0, B與B0同向 抗磁質(zhì)(diamagnetic material):r <1,B
13、,定義:相對磁導(dǎo)率(relative permeability):,磁導(dǎo)率(permeability):,磁介質(zhì)中磁場:,,,二、磁介質(zhì)中的高斯定理和安培環(huán)路定理,1. 有磁介質(zhì)時的高斯定理,2. 有磁介質(zhì)時的安培環(huán)路定理,磁場強(qiáng)度,磁介質(zhì)中安培環(huán)路定理,介質(zhì)磁化的附加磁場就對應(yīng)存在磁化電流Is,注:(1) 的環(huán)流只與傳導(dǎo)電流有關(guān),與磁化電流無關(guān) (2) 與 一樣是輔助量,描述電磁場,(3) 在真空中:,例6-10*.為了測試某種材料的相對磁導(dǎo)率,常將材料做成橫截面為圓形的螺繞環(huán)芯子, 設(shè)環(huán)上繞有線圈200匝, 平均圍長0.1m, 橫截面積為510-5m2, 當(dāng)線圈內(nèi)通有電流0.1A時
14、用磁通計測得穿過橫截面積的磁通量為610-5 Wb, 試計算該材料的相對磁導(dǎo)率。,截面磁場近似均勻,解:選如圖所示的安培環(huán)路,三、鐵磁質(zhì),1. 鐵磁質(zhì)的特點,高:B隨H迅速增長,平均斜率 比非鐵磁質(zhì)大得多。 非線性: B和H呈非線性關(guān)系, 非單值關(guān)系,非恒量。 磁滯(hysteresis):B的變化落后于 H的變化。 存在居里點:臨界溫度時,失去 鐵磁性成為順磁質(zhì)。 鐵:T=1040K 鎳:T=631K,2. 鐵磁質(zhì)的磁化特性 磁滯回線,,Br,Hc,Oa: 起始磁化曲線,Hs: 飽和磁場強(qiáng)度,Br:剩余磁感應(yīng)強(qiáng)度,Hc:矯頑力(coercive force),起始磁化曲線 磁滯回線,磁滯損耗:材料熱效應(yīng)大小與磁滯回線(hysteresis loop) 面積成正比,磁滯效應(yīng):磁感應(yīng)強(qiáng)度B變化跟不上磁場強(qiáng)度H的 變化,磁滯損耗小,容易磁化,容易退磁,適用于交變磁場。如制造電機(jī),變壓器等的鐵芯。,3. 鐵磁材料按磁滯回線分類,適合于制造永磁體,適合于制作記錄磁帶及計算機(jī)的記憶元件,鐵磁質(zhì)的性質(zhì)可用磁疇理論解釋,,