第二章圓錐曲線與方程教案
《第二章圓錐曲線與方程教案》由會(huì)員分享,可在線閱讀,更多相關(guān)《第二章圓錐曲線與方程教案(39頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第二章 圓錐曲線與方程 2.1曲線與方程 2.1.1曲線與方程2.1.2求曲線的軌跡方程 一、教學(xué)目標(biāo) (一)知識(shí)教學(xué)點(diǎn) 使學(xué)生掌握常用動(dòng)點(diǎn)的軌跡以及求動(dòng)點(diǎn)軌跡方程的常用技巧與方法.(二)能力訓(xùn)練點(diǎn) 通過(guò)對(duì)求軌跡方程的常用技巧與方法的歸納和介紹,培養(yǎng)學(xué)生綜合運(yùn)用各方面知識(shí)的能力. (三)學(xué)科滲透點(diǎn) 通過(guò)對(duì)求軌跡方程的常用技巧與方法的介紹,使學(xué)生掌握常用動(dòng)點(diǎn)的軌跡,為學(xué)習(xí)物理等學(xué)科打下扎實(shí)的基礎(chǔ). 二、教材分析 1.重點(diǎn):求動(dòng)點(diǎn)的軌跡方程的常用技巧與方法. (解決辦法:對(duì)每種方法用例題加以說(shuō)明,使學(xué)生掌握這種方法.)2.難點(diǎn):作相關(guān)點(diǎn)法求動(dòng)點(diǎn)的軌跡方法. (解決辦法:先
2、使學(xué)生了解相關(guān)點(diǎn)法的思路,再用例題進(jìn)行講解.) 教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。 教學(xué)設(shè)想:激發(fā)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積極進(jìn)取的精神. 三、教學(xué)過(guò)程 學(xué)生探究過(guò)程: (一)復(fù)習(xí)引入 大家知道,平面解析幾何研究的主要問(wèn)題是: (1)根據(jù)已知條件,求出表示平面曲線的方程; (2)通過(guò)方程,研究平面曲線的性質(zhì). 我們已經(jīng)對(duì)常見(jiàn)曲線圓、橢圓、雙曲線以及拋物線進(jìn)行過(guò)這兩個(gè)方面的研究,今天在上面已經(jīng)研究的基礎(chǔ)上來(lái)對(duì)根據(jù)已知條件求曲線的軌跡方程的常見(jiàn)技巧與方法進(jìn)行系統(tǒng)分析. (二)幾種常見(jiàn)求軌跡方程的方法 1.直接法 由題設(shè)所給(或通過(guò)分析圖形的幾
3、何性質(zhì)而得出)的動(dòng)點(diǎn)所滿足的幾何條件列出等式,再用坐標(biāo)代替這等式,化簡(jiǎn)得曲線的方程,這種方法叫直接法. 例1(1)求和定圓x2+y2=k2的圓周的距離等于k的動(dòng)點(diǎn)P的軌跡方程; (2)過(guò)點(diǎn)A(a,o)作圓O∶x2+y2=R2(a>R>o)的割線,求割線被圓O截得弦的中點(diǎn)的軌跡. 對(duì)(1)分析: 動(dòng)點(diǎn)P的軌跡是不知道的,不能考查其幾何特征,但是給出了動(dòng)點(diǎn)P的運(yùn)動(dòng)規(guī)律:|OP|=2R或|OP|=0. 解:設(shè)動(dòng)點(diǎn)P(x,y),則有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求動(dòng)點(diǎn)P的軌跡方程為x2+y2=4R2或x2+y2=0. 對(duì)(2)分析: 題設(shè)
4、中沒(méi)有具體給出動(dòng)點(diǎn)所滿足的幾何條件,但可以通過(guò)分析圖形的幾何性質(zhì)而得出,即圓心與弦的中點(diǎn)連線垂直于弦,它們的斜率互為負(fù)倒數(shù).由學(xué)生演板完成,解答為: 設(shè)弦的中點(diǎn)為M(x,y),連結(jié)OM, 則OM⊥AM. ∵kOM·kAM=-1, 其軌跡是以O(shè)A為直徑的圓在圓O內(nèi)的一段弧(不含端點(diǎn)). 2.定義法 利用所學(xué)過(guò)的圓的定義、橢圓的定義、雙曲線的定義、拋物線的定義直接寫出所求的動(dòng)點(diǎn)的軌跡方程,這種方法叫做定義法.這種方法要求題設(shè)中有定點(diǎn)與定直線及兩定點(diǎn)距離之和或差為定值的條件,或利用平面幾何知識(shí)分析得出這些條件. 直平分線l交半徑OQ于點(diǎn)P(見(jiàn)圖2-45),當(dāng)Q點(diǎn)在圓周上運(yùn)動(dòng)時(shí),
5、求點(diǎn)P的軌跡方程. 分析: ∵點(diǎn)P在AQ的垂直平分線上, ∴|PQ|=|PA|. 又P在半徑OQ上. ∴|PO|+|PQ|=R,即|PO|+|PA|=R. 故P點(diǎn)到兩定點(diǎn)距離之和是定值,可用橢圓定義 寫出P點(diǎn)的軌跡方程. 解:連接PA ∵l⊥PQ,∴|PA|=|PQ|. 又P在半徑OQ上. ∴|PO|+|PQ|=2. 由橢圓定義可知:P點(diǎn)軌跡是以O(shè)、A為焦點(diǎn)的橢圓. 3.相關(guān)點(diǎn)法 若動(dòng)點(diǎn)P(x,y)隨已知曲線上的點(diǎn)Q(x0,y0)的變動(dòng)而變動(dòng),且x0、y0可用x、y表示,則將Q點(diǎn)坐標(biāo)表達(dá)式代入已知曲線方程,即得點(diǎn)P的軌跡方程.這種方法稱為相關(guān)點(diǎn)法(或代換法
6、). 例3 已知拋物線y2=x+1,定點(diǎn)A(3,1)、B為拋物線上任意一點(diǎn),點(diǎn)P在線段AB上,且有BP∶PA=1∶2,當(dāng)B點(diǎn)在拋物線上變動(dòng)時(shí),求點(diǎn)P的軌跡方程. 分析: P點(diǎn)運(yùn)動(dòng)的原因是B點(diǎn)在拋物線上運(yùn)動(dòng),因此B可作為相關(guān)點(diǎn),應(yīng)先找出點(diǎn)P與點(diǎn)B的聯(lián)系. 解:設(shè)點(diǎn)P(x,y),且設(shè)點(diǎn)B(x0,y0) ∵BP∶PA=1∶2,且P為線段AB的內(nèi)分點(diǎn). 4.待定系數(shù)法 求圓、橢圓、雙曲線以及拋物線的方程常用待定系數(shù)法求. 例4 已知拋物線y2=4x和以坐標(biāo)軸為對(duì)稱軸、實(shí)軸在y軸上的雙曲 曲線方程. 分析: 因?yàn)殡p曲線以坐標(biāo)軸為對(duì)稱軸,實(shí)軸在y軸上,所以可設(shè)
7、雙曲線方 ax2-4b2x+a2b2=0 ∵拋物線和雙曲線僅有兩個(gè)公共點(diǎn),根據(jù)它們的對(duì)稱性,這兩個(gè)點(diǎn)的橫坐標(biāo)應(yīng)相等,因此方程ax2-4b2x+a2b2=0應(yīng)有等根. ∴△=1664-4Q4b2=0,即a2=2b. (以下由學(xué)生完成) 由弦長(zhǎng)公式得: 即a2b2=4b2-a2. (三)鞏固練習(xí) 用十多分鐘時(shí)間作一個(gè)小測(cè)驗(yàn),檢查一下教學(xué)效果.練習(xí)題用一小黑板給出. 1.△ABC一邊的兩個(gè)端點(diǎn)是B(0,6)和C(0,-6),另兩邊斜率的 2.點(diǎn)P與一定點(diǎn)F(2,0)的距離和它到一定直線x=8的距離的比是1∶2,求點(diǎn)P的軌跡方程,并說(shuō)明軌跡是什么圖形? 3
8、.求拋物線y2=2px(p>0)上各點(diǎn)與焦點(diǎn)連線的中點(diǎn)的軌跡方程. 答案: 義法) 由中點(diǎn)坐標(biāo)公式得: (四)、教學(xué)反思 求曲線的軌跡方程一般地有直接法、定義法、相關(guān)點(diǎn)法、待定系數(shù)法,還有參數(shù)法、復(fù)數(shù)法也是求曲線的軌跡方程的常見(jiàn)方法,這等到講了參數(shù)方程、復(fù)數(shù)以后再作介紹. 五、布置作業(yè) 1.兩定點(diǎn)的距離為6,點(diǎn)M到這兩個(gè)定點(diǎn)的距離的平方和為26,求點(diǎn)M的軌跡方程. 2.動(dòng)點(diǎn)P到點(diǎn)F1(1,0)的距離比它到F2(3,0)的距離少2,求P點(diǎn)的軌跡. 3.已知圓x2+y2=4上有定點(diǎn)A(2,0),過(guò)定點(diǎn)A作弦AB,并延長(zhǎng)到點(diǎn)P,使3|AB|=2|AB|,求動(dòng)點(diǎn)P
9、的軌跡方程.作業(yè)答案: 1.以兩定點(diǎn)A、B所在直線為x軸,線段AB的垂直平分線為y軸建立直角坐標(biāo)系,得點(diǎn)M的軌跡方程x2+y2=4 2.∵|PF2|-|PF|=2,且|F1F2|∴P點(diǎn)只能在x軸上且x<1,軌跡是一條射線 六、板書設(shè)計(jì) 2.2 橢 圓 2.2.1橢圓及其標(biāo)準(zhǔn)方程 ◆ 知識(shí)與技能目標(biāo) 理解橢圓的概念,掌握橢圓的定義、會(huì)用橢圓的定義解決實(shí)際問(wèn)題;理解橢圓標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程及化簡(jiǎn)無(wú)理方程的常用的方法;了解求橢圓的動(dòng)點(diǎn)的伴隨點(diǎn)的軌跡方程的一般方法. ◆ 過(guò)程與方
10、法目標(biāo) (1)預(yù)習(xí)與引入過(guò)程 當(dāng)變化的平面與圓錐軸所成的角在變化時(shí),觀察平面截圓錐的截口曲線(截面與圓錐側(cè)面的交線)是什么圖形?又是怎么樣變化的?特別是當(dāng)截面不與圓錐的軸線或圓錐的母線平行時(shí),截口曲線是橢圓,再觀察或操作了課件后,提出兩個(gè)問(wèn)題:第一、你能理解為什么把圓、橢圓、雙曲線和拋物線叫做圓錐曲線;第二、你能舉出現(xiàn)實(shí)生活中圓錐曲線的例子.當(dāng)學(xué)生把上述兩個(gè)問(wèn)題回答清楚后,要引導(dǎo)學(xué)生一起探究P41頁(yè)上的問(wèn)題(同桌的兩位同學(xué)準(zhǔn)備無(wú)彈性的細(xì)繩子一條(約10cm長(zhǎng),兩端各結(jié)一個(gè)套),教師準(zhǔn)備無(wú)彈性細(xì)繩子一條(約60cm,一端結(jié)個(gè)套,另一端是活動(dòng)的),圖釘兩個(gè)).當(dāng)套上鉛筆,拉緊繩子,移動(dòng)筆尖,畫
11、出的圖形是橢圓.啟發(fā)性提問(wèn):在這一過(guò)程中,你能說(shuō)出移動(dòng)的筆?。▌?dòng)點(diǎn))滿足的幾何條件是什么?〖板書〗2.1.1橢圓及其標(biāo)準(zhǔn)方程. (2)新課講授過(guò)程 (i)由上述探究過(guò)程容易得到橢圓的定義. 〖板書〗把平面內(nèi)與兩個(gè)定點(diǎn),的距離之和等于常數(shù)(大于)的點(diǎn)的軌跡叫做橢圓(ellipse).其中這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩定點(diǎn)間的距離叫做橢圓的焦距.即當(dāng)動(dòng)點(diǎn)設(shè)為時(shí),橢圓即為點(diǎn)集. (ii)橢圓標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程 提問(wèn):已知圖形,建立直角坐標(biāo)系的一般性要求是什么?第一、充分利用圖形的對(duì)稱性;第二、注意圖形的特殊性和一般性關(guān)系. 無(wú)理方程的化簡(jiǎn)過(guò)程是教學(xué)的難點(diǎn),注意無(wú)理方程的兩次移項(xiàng)、平方整理
12、. 設(shè)參量的意義:第一、便于寫出橢圓的標(biāo)準(zhǔn)方程;第二、的關(guān)系有明顯的幾何意義. 類比:寫出焦點(diǎn)在軸上,中心在原點(diǎn)的橢圓的標(biāo)準(zhǔn)方程. (iii)例題講解與引申 例1 已知橢圓兩個(gè)焦點(diǎn)的坐標(biāo)分別是,,并且經(jīng)過(guò)點(diǎn),求它的標(biāo)準(zhǔn)方程. 分析:由橢圓的標(biāo)準(zhǔn)方程的定義及給出的條件,容易求出.引導(dǎo)學(xué)生用其他方法來(lái)解. 另解:設(shè)橢圓的標(biāo)準(zhǔn)方程為,因點(diǎn)在橢圓上, 則. 例2 如圖,在圓上任取一點(diǎn),過(guò)點(diǎn)作軸的垂線段,為垂足.當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),線段的中點(diǎn)的軌跡是什么? 分析:點(diǎn)在圓上運(yùn)動(dòng),由點(diǎn)移動(dòng)引起點(diǎn)的運(yùn)動(dòng),則稱點(diǎn)是點(diǎn)的伴隨點(diǎn),因點(diǎn)為線段的中點(diǎn),則點(diǎn)的坐標(biāo)可由點(diǎn)來(lái)表示,從而能求點(diǎn)的軌跡方程
13、. 引申:設(shè)定點(diǎn),是橢圓上動(dòng)點(diǎn),求線段中點(diǎn)的軌跡方程. 解法剖析:①(代入法求伴隨軌跡)設(shè),;②(點(diǎn)與伴隨點(diǎn)的關(guān)系)∵為線段的中點(diǎn),∴;③(代入已知軌跡求出伴隨軌跡),∵,∴點(diǎn)的軌跡方程為;④伴隨軌跡表示的范圍. 例3如圖,設(shè),的坐標(biāo)分別為,.直線,相交于點(diǎn),且它們的斜率之積為,求點(diǎn)的軌跡方程. 分析:若設(shè)點(diǎn),則直線,的斜率就可以用含的式子表示,由于直線,的斜率之積是,因此,可以求出之間的關(guān)系式,即得到點(diǎn)的軌跡方程. 解法剖析:設(shè)點(diǎn),則,; 代入點(diǎn)的集合有,化簡(jiǎn)即可得點(diǎn)的軌跡方程. 引申:如圖,設(shè)△的兩個(gè)頂點(diǎn),,頂點(diǎn)在移動(dòng),且,且,試求動(dòng)點(diǎn)的軌跡方程. 引申目的有兩點(diǎn):
14、①讓學(xué)生明白題目涉及問(wèn)題的一般情形;②當(dāng)值在變化時(shí),線段的角色也是從橢圓的長(zhǎng)軸→圓的直徑→橢圓的短軸. ◆ 情感、態(tài)度與價(jià)值觀目標(biāo) 通過(guò)作圖展示與操作,必須讓學(xué)生認(rèn)同:圓、橢圓、雙曲線和拋物線都是圓錐曲線,是因它們都是平面與圓錐曲面相截而得其名;必須讓學(xué)生認(rèn)同與體會(huì):橢圓的定義及特殊情形當(dāng)常數(shù)等于兩定點(diǎn)間距離時(shí),軌跡是線段;必須讓學(xué)生認(rèn)同與理解:已知幾何圖形建立直角坐標(biāo)系的兩個(gè)原則,及引入?yún)⒘康囊饬x,培養(yǎng)學(xué)生用對(duì)稱的美學(xué)思維來(lái)體現(xiàn)數(shù)學(xué)的和諧美;讓學(xué)生認(rèn)同與領(lǐng)悟:例1使用定義解題是首選的,但也可以用其他方法來(lái)解,培養(yǎng)學(xué)生從定義的角度思考問(wèn)題的好習(xí)慣;例2是典型的用代入法求動(dòng)點(diǎn)的伴隨點(diǎn)的軌跡,
15、培養(yǎng)學(xué)生的辯證思維方法,會(huì)用分析、聯(lián)系的觀點(diǎn)解決問(wèn)題;通過(guò)例3培養(yǎng)學(xué)生的對(duì)問(wèn)題引申、分段討論的思維品質(zhì). ◆能力目標(biāo) (1) 想象與歸納能力:能根據(jù)課程的內(nèi)容能想象日常生活中哪些是橢圓、雙曲線和拋物線的實(shí)際例子,能用數(shù)學(xué)符號(hào)或自然語(yǔ)言的描述橢圓的定義,能正確且直觀地繪作圖形,反過(guò)來(lái)根據(jù)圖形能用數(shù)學(xué)術(shù)語(yǔ)和數(shù)學(xué)符號(hào)表示. (2) 思維能力:會(huì)把幾何問(wèn)題化歸成代數(shù)問(wèn)題來(lái)分析,反過(guò)來(lái)會(huì)把代數(shù)問(wèn)題轉(zhuǎn)化為幾何問(wèn)題來(lái)思考,培養(yǎng)學(xué)生的數(shù)形結(jié)合的思想方法;培養(yǎng)學(xué)生的會(huì)從特殊性問(wèn)題引申到一般性來(lái)研究,培養(yǎng)學(xué)生的辯證思維能力. (3) 實(shí)踐能力:培養(yǎng)學(xué)生實(shí)際動(dòng)手能力,綜合利用已有的知識(shí)能力. (4) 數(shù)學(xué)
16、活動(dòng)能力:培養(yǎng)學(xué)生觀察、實(shí)驗(yàn)、探究、驗(yàn)證與交流等數(shù)學(xué)活動(dòng)能力. (5) 創(chuàng)新意識(shí)能力:培養(yǎng)學(xué)生思考問(wèn)題、并能探究發(fā)現(xiàn)一些問(wèn)題的能力,探究解決問(wèn)題的一般的思想、方法和途徑. 練習(xí):第45頁(yè)1、2、3、4、 作業(yè):第53頁(yè)2、3、 2.1.2 橢圓的簡(jiǎn)單幾何性質(zhì) ◆ 知識(shí)與技能目標(biāo) 了解用方程的方法研究圖形的對(duì)稱性;理解橢圓的范圍、對(duì)稱性及對(duì)稱軸,對(duì)稱中心、離心率、頂點(diǎn)的概念;掌握橢圓的標(biāo)準(zhǔn)方程、會(huì)用橢圓的定義解決實(shí)際問(wèn)題;通過(guò)例題了解橢圓的第二定義,準(zhǔn)線及焦半徑的概念,利用信息技術(shù)初步了解橢圓的第二定義. ◆ 過(guò)程與方法目
17、標(biāo) (1)復(fù)習(xí)與引入過(guò)程 引導(dǎo)學(xué)生復(fù)習(xí)由函數(shù)的解析式研究函數(shù)的性質(zhì)或其圖像的特點(diǎn),在本節(jié)中不僅要注意通過(guò)對(duì)橢圓的標(biāo)準(zhǔn)方程的討論,研究橢圓的幾何性質(zhì)的理解和應(yīng)用,而且還注意對(duì)這種研究方法的培養(yǎng).①由橢圓的標(biāo)準(zhǔn)方程和非負(fù)實(shí)數(shù)的概念能得到橢圓的范圍;②由方程的性質(zhì)得到橢圓的對(duì)稱性;③先定義圓錐曲線頂點(diǎn)的概念,容易得出橢圓的頂點(diǎn)的坐標(biāo)及長(zhǎng)軸、短軸的概念;④通過(guò)P48的思考問(wèn)題,探究橢圓的扁平程度量橢圓的離心率.〖板書〗§2.1.2橢圓的簡(jiǎn)單幾何性質(zhì). (2)新課講授過(guò)程 (i)通過(guò)復(fù)習(xí)和預(yù)習(xí),知道對(duì)橢圓的標(biāo)準(zhǔn)方程的討論來(lái)研究橢圓的幾何性質(zhì). 提問(wèn):研究曲線的幾何特征有什么意義?從哪些方面來(lái)研
18、究? 通過(guò)對(duì)曲線的范圍、對(duì)稱性及特殊點(diǎn)的討論,可以從整體上把握曲線的形狀、大小和位置.要從范圍、對(duì)稱性、頂點(diǎn)及其他特征性質(zhì)來(lái)研究曲線的幾何性質(zhì). (ii)橢圓的簡(jiǎn)單幾何性質(zhì) ①范圍:由橢圓的標(biāo)準(zhǔn)方程可得,,進(jìn)一步得:,同理可得:,即橢圓位于直線和所圍成的矩形框圖里; ②對(duì)稱性:由以代,以代和代,且以代這三個(gè)方面來(lái)研究橢圓的標(biāo)準(zhǔn)方程發(fā)生變化沒(méi)有,從而得到橢圓是以軸和軸為對(duì)稱軸,原點(diǎn)為對(duì)稱中心; ③頂點(diǎn):先給出圓錐曲線的頂點(diǎn)的統(tǒng)一定義,即圓錐曲線的對(duì)稱軸與圓錐曲線的交點(diǎn)叫做圓錐曲線的頂點(diǎn).因此橢圓有四個(gè)頂點(diǎn),由于橢圓的對(duì)稱軸有長(zhǎng)短之分,較長(zhǎng)的對(duì)稱軸叫做長(zhǎng)軸,較短的叫做短軸; ④離心
19、率: 橢圓的焦距與長(zhǎng)軸長(zhǎng)的比叫做橢圓的離心率(),; . (iii)例題講解與引申、擴(kuò)展 例4 求橢圓的長(zhǎng)軸和短軸的長(zhǎng)、離心率、焦點(diǎn)和頂點(diǎn)的坐標(biāo). 分析:由橢圓的方程化為標(biāo)準(zhǔn)方程,容易求出.引導(dǎo)學(xué)生用橢圓的長(zhǎng)軸、短軸、離心率、焦點(diǎn)和頂點(diǎn)的定義即可求相關(guān)量. 擴(kuò)展:已知橢圓的離心率為,求的值. 解法剖析:依題意,,但橢圓的焦點(diǎn)位置沒(méi)有確定,應(yīng)分類討論:①當(dāng)焦點(diǎn)在軸上,即時(shí),有,∴,得;②當(dāng)焦點(diǎn)在軸上,即時(shí),有,∴. 例5 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面的一部分.過(guò)對(duì)對(duì)稱的截口是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)上,片門位于另一個(gè)焦點(diǎn)上,由橢圓一個(gè)焦點(diǎn)發(fā)出的光線,經(jīng)過(guò)旋轉(zhuǎn)
20、橢圓面反射后集中到另一個(gè)焦點(diǎn).已知,,.建立適當(dāng)?shù)淖鴺?biāo)系,求截口所在橢圓的方程. 解法剖析:建立適當(dāng)?shù)闹苯亲鴺?biāo)系,設(shè)橢圓的標(biāo)準(zhǔn)方程為,算出的值;此題應(yīng)注意兩點(diǎn):①注意建立直角坐標(biāo)系的兩個(gè)原則;②關(guān)于的近似值,原則上在沒(méi)有注意精確度時(shí),看題中其他量給定的有效數(shù)字來(lái)決定. 引申:如圖所示, “神舟”截人飛船發(fā)射升空,進(jìn)入預(yù)定軌道開(kāi)始巡天飛行,其軌道是以地球的中心為一個(gè)焦點(diǎn)的橢圓,近地點(diǎn)距地面,遠(yuǎn)地點(diǎn)距地面,已知地球的半徑.建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求出橢圓的軌跡方程. 例6如圖,設(shè)與定點(diǎn)的距離和它到直線:的距離的比是常數(shù),求點(diǎn)的軌跡方程. 分析:若設(shè)點(diǎn),則,到直線:的距離,則容易得點(diǎn)的軌跡方程
21、. 引申:(用《幾何畫板》探究)若點(diǎn)與定點(diǎn)的距離和它到定直線:的距離比是常數(shù),則點(diǎn)的軌跡方程是橢圓.其中定點(diǎn)是焦點(diǎn),定直線:相應(yīng)于的準(zhǔn)線;由橢圓的對(duì)稱性,另一焦點(diǎn),相應(yīng)于的準(zhǔn)線:. ◆ 情感、態(tài)度與價(jià)值觀目標(biāo) 在合作、互動(dòng)的教學(xué)氛圍中,通過(guò)師生之間、學(xué)生之間的交流、合作、互動(dòng)實(shí)現(xiàn)共同探究,教學(xué)相長(zhǎng)的教學(xué)活動(dòng)情境,結(jié)合教學(xué)內(nèi)容,培養(yǎng)學(xué)生科學(xué)探索精神、審美觀和科學(xué)世界觀,激勵(lì)學(xué)生創(chuàng)新.必須讓學(xué)生認(rèn)同和掌握:橢圓的簡(jiǎn)單幾何性質(zhì),能由橢圓的標(biāo)準(zhǔn)方程能直接得到橢圓的范圍、對(duì)稱性、頂點(diǎn)和離心率;必須讓學(xué)生認(rèn)同與理解:已知幾何圖形建立直角坐標(biāo)系的兩個(gè)原則,①充分利用圖形對(duì)稱性,②注意圖形的特殊性和一般
22、性;必須讓學(xué)生認(rèn)同與熟悉:取近似值的兩個(gè)原則:①實(shí)際問(wèn)題可以近似計(jì)算,也可以不近似計(jì)算,②要求近似計(jì)算的一定要按要求進(jìn)行計(jì)算,并按精確度要求進(jìn)行,沒(méi)有作說(shuō)明的按給定的有關(guān)量的有效數(shù)字處理;讓學(xué)生參與并掌握利用信息技術(shù)探究點(diǎn)的軌跡問(wèn)題,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和掌握利用先進(jìn)教學(xué)輔助手段的技能. ◆能力目標(biāo) (1) 分析與解決問(wèn)題的能力:通過(guò)學(xué)生的積極參與和積極探究,培養(yǎng)學(xué)生的分析問(wèn)題和解決問(wèn)題的能力. (2) 思維能力:會(huì)把幾何問(wèn)題化歸成代數(shù)問(wèn)題來(lái)分析,反過(guò)來(lái)會(huì)把代數(shù)問(wèn)題轉(zhuǎn)化為幾何問(wèn)題來(lái)思考;培養(yǎng)學(xué)生的會(huì)從特殊性問(wèn)題引申到一般性來(lái)研究,培養(yǎng)學(xué)生的辯證思維能力. (3) 實(shí)踐能力:培養(yǎng)學(xué)生
23、實(shí)際動(dòng)手能力,綜合利用已有的知識(shí)能力. (4) 創(chuàng)新意識(shí)能力:培養(yǎng)學(xué)生思考問(wèn)題、并能探究發(fā)現(xiàn)一些問(wèn)題的能力,探究解決問(wèn)題的一般的思想、方法和途徑. 練習(xí):第52頁(yè)1、2、3、4、5、6、7 作業(yè):第53頁(yè)4、5 補(bǔ)充: 1.課題:雙曲線第二定義 學(xué)法指導(dǎo):以問(wèn)題為誘導(dǎo),結(jié)合圖形,引導(dǎo)學(xué)生進(jìn)行必要的聯(lián)想、類比、化歸、轉(zhuǎn)化. 復(fù)習(xí)回顧 問(wèn)題推廣 引出課題 典型例題 課堂練習(xí) 歸納小結(jié) 教學(xué)目標(biāo) 知識(shí)目標(biāo):橢圓第二定義、準(zhǔn)線方程; 能力目標(biāo):1使學(xué)生了解橢圓第二定義給出的背景;
24、 2了解離心率的幾何意義; 3使學(xué)生理解橢圓第二定義、橢圓的準(zhǔn)線定義; 4使學(xué)生掌握橢圓的準(zhǔn)線方程以及準(zhǔn)線方程的應(yīng)用; 5使學(xué)生掌握橢圓第二定義的簡(jiǎn)單應(yīng)用; 情感與態(tài)度目標(biāo):通過(guò)問(wèn)題的引入和變式,激發(fā)學(xué)生學(xué)習(xí)的興趣,應(yīng)用運(yùn)動(dòng)變化的觀點(diǎn)看待問(wèn)題,體現(xiàn)數(shù)學(xué)的美學(xué)價(jià)值. 教學(xué)重點(diǎn):橢圓第二定義、焦半徑公式、準(zhǔn)線方程; 教學(xué)難點(diǎn):橢圓的第二定義的運(yùn)用; 教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。 教學(xué)設(shè)想:激發(fā)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積極進(jìn)取的精神. 教學(xué)過(guò)程: 學(xué)生探究過(guò)程:復(fù)習(xí)回顧
25、 1.橢圓的長(zhǎng)軸長(zhǎng)為 18 ,短軸長(zhǎng)為 6 ,半焦距為,離心率為,焦點(diǎn)坐標(biāo)為,頂點(diǎn)坐標(biāo)為,(準(zhǔn)線方程為). 2.短軸長(zhǎng)為8,離心率為的橢圓兩焦點(diǎn)分別為、,過(guò)點(diǎn)作直線交橢圓于A、B兩點(diǎn),則的周長(zhǎng)為 20 . 引入課題 【習(xí)題4(教材P50例6)】橢圓的方程為,M1,M2為橢圓上的點(diǎn) ① 求點(diǎn)M1(4,2.4)到焦點(diǎn)F(3,0)的距離 2.6 . ② 若點(diǎn)M2為(4,y0)不求出點(diǎn)M2的縱坐標(biāo),你能求出這點(diǎn)到焦點(diǎn)F(3,0)的距離嗎? 解:且代入消去得 【推廣】你能否將橢圓上任一點(diǎn)到焦點(diǎn)的距離表示成點(diǎn)M橫坐標(biāo)的函數(shù)嗎? 解:代入消去 得 問(wèn)題1:你能將所得函數(shù)
26、關(guān)系敘述成命題嗎?(用文字語(yǔ)言表述) 橢圓上的點(diǎn)M到右焦點(diǎn)的距離與它到定直線的距離的比等于離心率 問(wèn)題2:你能寫出所得命題的逆命題嗎?并判斷真假?(逆命題中不能出現(xiàn)焦點(diǎn)與離心率) 動(dòng)點(diǎn)到定點(diǎn)的距離與它到定直線的距離的比等于常數(shù)的點(diǎn)的軌跡是橢圓. 【引出課題】橢圓的第二定義 當(dāng)點(diǎn)與一個(gè)定點(diǎn)的距離和它到一條定直線的距離的比是常數(shù)時(shí),這個(gè)點(diǎn)的軌跡是橢圓.定點(diǎn)是橢圓的焦點(diǎn),定直線叫做橢圓的準(zhǔn)線,常數(shù)是橢圓的離心率. 對(duì)于橢圓,相應(yīng)于焦點(diǎn)的準(zhǔn)線方程是.根據(jù)對(duì)稱性,相應(yīng)于焦點(diǎn)的準(zhǔn)線方程是.對(duì)于橢圓的準(zhǔn)線方程是. 可見(jiàn)橢圓的離心率就是橢圓上一點(diǎn)到焦點(diǎn)的距離與到相應(yīng)準(zhǔn)線距離的比,這就是離心率的幾
27、何意義. 由橢圓的第二定義可得:右焦半徑公式為;左焦半徑公式為 典型例題 例1、求橢圓的右焦點(diǎn)和右準(zhǔn)線;左焦點(diǎn)和左準(zhǔn)線; 解:由題意可知右焦點(diǎn)右準(zhǔn)線;左焦點(diǎn)和左準(zhǔn)線 變式:求橢圓方程的準(zhǔn)線方程; 解:橢圓可化為標(biāo)準(zhǔn)方程為:,故其準(zhǔn)線方程為 小結(jié):求橢圓的準(zhǔn)線方程一定要化成標(biāo)準(zhǔn)形式,然后利用準(zhǔn)線公式即可求出 例2、橢圓上的點(diǎn)到左準(zhǔn)線的距離是,求到左焦點(diǎn)的距離為 . 變式:求到右焦點(diǎn)的距離為 . 解:記橢圓的左右焦點(diǎn)分別為到左右準(zhǔn)線的距離分別為由橢圓的第二定義可知: 又由橢的第一定義可知: 另解:點(diǎn)M到左準(zhǔn)線的距離是2.5,所以點(diǎn)M到
28、右準(zhǔn)線的距離為 小結(jié):橢圓第二定義的應(yīng)用和第一定義的應(yīng)用 例1、 點(diǎn)P與定點(diǎn)A(2,0)的距離和它到定直線的距離的比是1:2,求點(diǎn)P的軌跡; 解法一:設(shè)為所求軌跡上的任一點(diǎn),則由化簡(jiǎn)得,故所的軌跡是橢圓。 解法二:因?yàn)槎c(diǎn)A(2,0)所以,定直線所以解得,又因?yàn)楣仕蟮能壽E方程為 變式:點(diǎn)P與定點(diǎn)A(2,0)的距離和它到定直線的距離的比是1:2,求點(diǎn)P的軌跡; 分析:這道題目與剛才的哪道題目可以說(shuō)是同一種類型的題目,那么能否用上面的兩種方法來(lái)解呢? 解法一:設(shè)為所求軌跡上的任一點(diǎn),則由化簡(jiǎn)得配方得,故所的軌跡是橢圓,其中心在(1,0) 解法二:因?yàn)槎c(diǎn)A(2,0)所以,定直
29、線所以解得,故所求的軌跡方程為 問(wèn)題1:求出橢圓方程和的長(zhǎng)半軸長(zhǎng)、短半軸長(zhǎng)、半焦距、離心率; 問(wèn)題2:求出橢圓方程和長(zhǎng)軸頂點(diǎn)、焦點(diǎn)、準(zhǔn)線方程; 解:因?yàn)榘褭E圓向右平移一個(gè)單位即可以得到橢圓所以問(wèn)題1中的所有問(wèn)題均不變,均為 長(zhǎng)軸頂點(diǎn)、焦點(diǎn)、準(zhǔn)線方程分別為:,; 長(zhǎng)軸頂點(diǎn)、焦點(diǎn)、準(zhǔn)線方程分別為:,; 反思:由于是標(biāo)準(zhǔn)方程,故只要有兩上獨(dú)立的條件就可以確定一個(gè)橢圓,而題目中有三個(gè)條件,所以我們必須進(jìn)行檢驗(yàn),又因?yàn)榱硪环矫骐x心率就等于這是兩上矛盾的結(jié)果,所以所求方程是錯(cuò)誤的。又由解法一可知,所求得的橢圓不是標(biāo)準(zhǔn)方程。 小結(jié):以后有涉及到“動(dòng)點(diǎn)到定點(diǎn)的距離和它到定直線的距離的比是常數(shù)時(shí)”
30、最好的方法是采用求軌跡方程的思路,但是這種方法計(jì)算量比較大; 解法二運(yùn)算量比較小,但應(yīng)注意到會(huì)不會(huì)是標(biāo)準(zhǔn)方程,即如果三個(gè)數(shù)據(jù)可以符合課本例4的關(guān)系的話,那么其方程就是標(biāo)準(zhǔn)方程,否則非標(biāo)準(zhǔn)方程,則只能用解法一的思維來(lái)解。 例4、設(shè)AB是過(guò)橢圓右焦點(diǎn)的弦,那么以AB為直徑的圓必與橢圓的右準(zhǔn)線( ) A.相切 B.相離 C.相交 D.相交或相切 分析:如何判斷直線與圓的位置關(guān)系呢? 解:設(shè)AB的中點(diǎn)為M,則M即為圓心,直徑是|AB|;記橢圓的右焦點(diǎn)為F,右準(zhǔn)線為; 過(guò)點(diǎn)A、B、M分別作出準(zhǔn)線的垂線,分別記為由梯
31、形的中位線可知 又由橢圓的第二定義可知即 又且故直線與圓相離 例5、已知點(diǎn)為橢圓的上任意一點(diǎn),、分別為左右焦點(diǎn);且求的最小值 分析:應(yīng)如何把表示出來(lái) 解:左準(zhǔn)線:,作于點(diǎn)D,記 由第二定義可知: ? ? 故有 所以有當(dāng)A、M、D三點(diǎn)共線時(shí),|MA|+|MD|有最小值: 即的最小值是 變式1:的最小值; 解: F1 A M D 變式2:的最小值; 解: 鞏固練習(xí) 1.已知 是橢圓 上一點(diǎn),若 到橢圓右準(zhǔn)線的距離是 ,則 到左焦點(diǎn)的距離為_(kāi)____________. 2.若橢圓 的離心率為 ,則它的長(zhǎng)半軸長(zhǎng)
32、是______________. 答案:1. ???? 2.1或2?? 教學(xué)反思 1.橢圓第二定義、焦半徑公式、準(zhǔn)線方程; 2.橢圓定義的簡(jiǎn)單運(yùn)用; 3.離心率的求法以及焦半徑公式的應(yīng)用; 課后作業(yè) 1.例題5的兩個(gè)變式; 2. 已知 , 為橢圓 上的兩點(diǎn), 是橢圓的右焦點(diǎn).若 , 的中點(diǎn)到橢圓左準(zhǔn)線的距離是 ,試確定橢圓的方程. 解:由橢圓方程可知 、兩準(zhǔn)線間距離為 .設(shè) , 到右準(zhǔn)線距離分別為 , ,由橢圓定義有 ,所以 ,則 , 中點(diǎn) 到右準(zhǔn)線距離為 ,于是 到左準(zhǔn)線距離為 , ,所求橢圓方程為 . 思考: 1.方程表示什么曲線? 解:;即方程表示到定點(diǎn)的距離與到
33、定直線的距離的比常數(shù)(且該常數(shù)小于1)方程表示橢圓 例Ⅱ、(06四川高考15)如圖把橢圓的長(zhǎng)軸AB分成8等分,過(guò)每個(gè)等分點(diǎn)作軸的垂線交橢圓的上半部分于七個(gè)點(diǎn),F(xiàn)是橢圓的一個(gè)焦點(diǎn),則= 解法一:,設(shè)的橫坐標(biāo)為,則不妨設(shè)其焦點(diǎn)為左焦點(diǎn) 由得 解法二:由題意可知和關(guān)于軸對(duì)稱,又由橢圓的對(duì)稱性及其第一定義可知,同理可知,, 故 板書設(shè)計(jì): 復(fù)習(xí)回顧 引入課題 問(wèn)題: 推廣: 橢圓第二定義 典型例題 1. 2. 3. 4. 5. 課堂練習(xí): 課堂小結(jié): 課后作業(yè): 思考: 2. 橢圓中焦點(diǎn)三角形的性質(zhì)及應(yīng)用 定義:橢圓上任意一
34、點(diǎn)與兩焦點(diǎn)所構(gòu)成的三角形稱為焦點(diǎn)三角形。 性質(zhì)一:已知橢圓方程為兩焦點(diǎn)分別為設(shè)焦點(diǎn)三角形中則。 性質(zhì)二:已知橢圓方程為左右兩焦點(diǎn)分別為設(shè)焦點(diǎn)三角形,若最大,則點(diǎn)P為橢圓短軸的端點(diǎn)。 證明:設(shè),由焦半徑公式可知:, 在中, = 性質(zhì)三:已知橢圓方程為兩焦點(diǎn)分別為設(shè)焦點(diǎn)三角形中則 證明:設(shè)則在中,由余弦定理得: 命題得證。 (2000年高考題)已知橢圓的兩焦點(diǎn)分別為若橢圓上存在一點(diǎn)使得求橢圓的離心率的取值范圍。 簡(jiǎn)解:由橢圓焦點(diǎn)三角形性質(zhì)可知即 ,
35、 于是得到的取值范圍是 性質(zhì)四:已知橢圓方程為兩焦點(diǎn)分別為設(shè)焦點(diǎn)三角形,則橢圓的離心率。 由正弦定理得: 由等比定理得: 而, ∴。 已知橢圓的焦點(diǎn)是F1(-1,0)、F2(1,0),P為橢圓上一點(diǎn),且|F1F2|是|PF1|和|PF2|的等差中項(xiàng). (1)求橢圓的方程; (2)若點(diǎn)P在第三象限,且∠PF1F2=120°,求tanF1PF2. 解:(1)由題設(shè)2|F1F2|=|PF1|+|PF2| ∴2a=4,又2c=2,∴b= ∴橢圓的方程為=1. (2)設(shè)∠F1PF2=θ,則∠PF2F1=60°-θ 橢圓的離心率 則, 整
36、理得:5sinθ=(1+cosθ) ∴故,tanF1PF2=tanθ=. 2.3雙曲線 2.2.1 雙曲線及其標(biāo)準(zhǔn)方程 ◆ 知識(shí)與技能目標(biāo) 理解雙曲線的概念,掌握雙曲線的定義、會(huì)用雙曲線的定義解決實(shí)際問(wèn)題;理解雙曲線標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程及化簡(jiǎn)無(wú)理方程的常用的方法;了解借助信息技術(shù)探究動(dòng)點(diǎn)軌跡的《幾何畫板》的制作或操作方法. ◆ 過(guò)程與方法目標(biāo) (1)預(yù)習(xí)與引入過(guò)程 預(yù)習(xí)教科書56頁(yè)至60頁(yè),當(dāng)變化的平面與圓錐軸所成的角在變化時(shí),觀察平面截圓錐的截口曲線(截面與圓錐側(cè)面的交線)是什么圖形?又是怎么樣變化的?特別是當(dāng)截面與圓錐的
37、軸線或平行時(shí),截口曲線是雙曲線,待觀察或操作了課件后,提出兩個(gè)問(wèn)題:第一、你能理解為什么此時(shí)的截口曲線是雙曲線而不是兩條拋物線;第二、你能舉出現(xiàn)實(shí)生活中雙曲線的例子.當(dāng)學(xué)生把上述兩個(gè)問(wèn)題回答清楚后,要引導(dǎo)學(xué)生一起思考與探究P56頁(yè)上的問(wèn)題(同桌的兩位同學(xué)準(zhǔn)備無(wú)彈性的細(xì)繩子兩條(一條約10cm長(zhǎng),另一條約6cm每條一端結(jié)一個(gè)套)和筆尖帶小環(huán)的鉛筆一枝,教師準(zhǔn)備無(wú)彈性細(xì)繩子兩條(一條約20cm,另一條約12cm,一端結(jié)個(gè)套,另一端是活動(dòng)的),圖釘兩個(gè)).當(dāng)把繩子按同一方向穿入筆尖的環(huán)中,把繩子的另一端重合在一起,拉緊繩子,移動(dòng)筆尖,畫出的圖形是雙曲線.啟發(fā)性提問(wèn):在這一過(guò)程中,你能說(shuō)出移動(dòng)的筆小(
38、動(dòng)點(diǎn))滿足的幾何條件是什么?〖板書〗§2.2.1雙曲線及其標(biāo)準(zhǔn)方程. (2)新課講授過(guò)程 (i)由上述探究過(guò)程容易得到雙曲線的定義. 〖板書〗把平面內(nèi)與兩個(gè)定點(diǎn),的距離的差的絕對(duì)值等于常數(shù)(小于)的點(diǎn)的軌跡叫做雙曲線(hyperbola).其中這兩個(gè)定點(diǎn)叫做雙曲線的焦點(diǎn),兩定點(diǎn)間的距離叫做雙曲線的焦距.即當(dāng)動(dòng)點(diǎn)設(shè)為時(shí),雙曲線即為點(diǎn)集. (ii)雙曲線標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程 提問(wèn):已知橢圓的圖形,是怎么樣建立直角坐標(biāo)系的?類比求橢圓標(biāo)準(zhǔn)方程的方法由學(xué)生來(lái)建立直角坐標(biāo)系. 無(wú)理方程的化簡(jiǎn)過(guò)程仍是教學(xué)的難點(diǎn),讓學(xué)生實(shí)際掌握無(wú)理方程的兩次移項(xiàng)、平方整理的數(shù)學(xué)活動(dòng)過(guò)程. 類比橢圓:設(shè)參量的
39、意義:第一、便于寫出雙曲線的標(biāo)準(zhǔn)方程;第二、的關(guān)系有明顯的幾何意義. 類比:寫出焦點(diǎn)在軸上,中心在原點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程. (iii)例題講解、引申與補(bǔ)充 例1 已知雙曲線兩個(gè)焦點(diǎn)分別為,,雙曲線上一點(diǎn)到,距離差的絕對(duì)值等于,求雙曲線的標(biāo)準(zhǔn)方程. 分析:由雙曲線的標(biāo)準(zhǔn)方程的定義及給出的條件,容易求出. 補(bǔ)充:求下列動(dòng)圓的圓心的軌跡方程:① 與⊙:內(nèi)切,且過(guò)點(diǎn);② 與⊙:和⊙:都外切;③ 與⊙:外切,且與⊙:內(nèi)切. 解題剖析:這表面上看是圓與圓相切的問(wèn)題,實(shí)際上是雙曲線的定義問(wèn)題.具體解:設(shè)動(dòng)圓的半徑為. ① ∵⊙與⊙內(nèi)切,點(diǎn)在⊙外,∴,,因此有,∴點(diǎn)的軌跡是以、為焦點(diǎn)的雙曲線的
40、左支,即的軌跡方程是; ② ∵⊙與⊙、⊙均外切,∴,,因此有,∴點(diǎn)的軌跡是以、為焦點(diǎn)的雙曲線的上支,∴的軌跡方程是; ③ ∵與外切,且與內(nèi)切,∴,,因此,∴點(diǎn)的軌跡是以、為焦點(diǎn)的雙曲線的右支,∴的軌跡方程是. 例2 已知,兩地相距,在地聽(tīng)到炮彈爆炸聲比在地晚,且聲速為,求炮彈爆炸點(diǎn)的軌跡方程. 分析:首先要判斷軌跡的形狀,由聲學(xué)原理:由聲速及,兩地聽(tīng)到爆炸聲的時(shí)間差,即可知,兩地與爆炸點(diǎn)的距離差為定值.由雙曲線的定義可求出炮彈爆炸點(diǎn)的軌跡方程. 擴(kuò)展:某中心接到其正東、正西、正北方向三個(gè)觀察點(diǎn)的報(bào)告:正西、正北兩個(gè)觀察點(diǎn)同時(shí)聽(tīng)到了一聲巨響,正東觀察點(diǎn)聽(tīng)到該巨響的時(shí)間比其他兩個(gè)觀察點(diǎn)
41、晚.已知各觀察點(diǎn)到該中心的距離都是.試確定該巨響發(fā)生的位置(假定當(dāng)時(shí)聲音傳播的速度為;相關(guān)點(diǎn)均在同一平面內(nèi)). 解法剖析:因正西、正北同時(shí)聽(tīng)到巨響,則巨響應(yīng)發(fā)生在西北方向或東南方向,以因正東比正西晚,則巨響應(yīng)在以這兩個(gè)觀察點(diǎn)為焦點(diǎn)的雙曲線上. 如圖,以接報(bào)中心為原點(diǎn),正東、正北方向分別為軸、軸方向,建立直角坐標(biāo)系,設(shè)、、分別是西、東、北觀察點(diǎn),則,,. 設(shè)為巨響發(fā)生點(diǎn),∵、同時(shí)聽(tīng)到巨響,∴所在直線為……①,又因點(diǎn)比點(diǎn)晚聽(tīng)到巨響聲,∴.由雙曲線定義知,,,∴,∴點(diǎn)在雙曲線方程為……②.聯(lián)立①、②求出點(diǎn)坐標(biāo)為.即巨響在正西北方向處. 探究:如圖,設(shè),的坐標(biāo)分別為,.直線,相交于點(diǎn),且它
42、們的斜率之積為,求點(diǎn)的軌跡方程,并與§2.1.例3比較,有什么發(fā)現(xiàn)? 探究方法:若設(shè)點(diǎn),則直線,的斜率就可以用含的式子表示,由于直線,的斜率之積是,因此,可以求出之間的關(guān)系式,即得到點(diǎn)的軌跡方程. ◆ 情感、態(tài)度與價(jià)值觀目標(biāo) 通過(guò)課件()的展示與操作,必須讓學(xué)生認(rèn)同:與圓錐的軸平行的平面去截圓錐曲面所得截口曲線是一條雙曲線而不是兩條拋物線;必須讓學(xué)生認(rèn)同與體會(huì):雙曲線的定義及特殊情形當(dāng)常數(shù)等于兩定點(diǎn)間距離時(shí),軌跡是兩條射線;必須讓學(xué)生認(rèn)同與理解:已知幾何圖形建立直角坐標(biāo)系的兩個(gè)原則,及引入?yún)⒘康囊饬x,培養(yǎng)學(xué)生用對(duì)稱的美學(xué)思維來(lái)體現(xiàn)數(shù)學(xué)的和諧美;讓學(xué)生認(rèn)同與領(lǐng)悟:像例1這基礎(chǔ)題配備是必要的
43、,但對(duì)定義的理解和使用是遠(yuǎn)遠(yuǎn)不夠的,必須配備有一定靈活性、有一定的思維空間的補(bǔ)充題;例2是典型雙曲線實(shí)例的題目,對(duì)培養(yǎng)學(xué)生的辯證思維方法,會(huì)用分析、聯(lián)系的觀點(diǎn)解決問(wèn)題有一定的幫助,但要準(zhǔn)確判定爆炸點(diǎn),必須對(duì)此題進(jìn)行擴(kuò)展,培養(yǎng)學(xué)生歸納、聯(lián)想拓展的思維能力. ◆能力目標(biāo) (1) 想象與歸納能力:能根據(jù)課程的內(nèi)容能想象日常生活中哪些是雙曲線的實(shí)際例子,能用數(shù)學(xué)符號(hào)或自然語(yǔ)言的描述雙曲線的定義,能正確且直觀地繪作圖形,反過(guò)來(lái)根據(jù)圖形能用數(shù)學(xué)術(shù)語(yǔ)和數(shù)學(xué)符號(hào)表示. (2) 思維能力:會(huì)把幾何問(wèn)題化歸成代數(shù)問(wèn)題來(lái)分析,反過(guò)來(lái)會(huì)把代數(shù)問(wèn)題轉(zhuǎn)化為幾何問(wèn)題來(lái)思考,培養(yǎng)學(xué)生的數(shù)形結(jié)合的思想方法;培養(yǎng)學(xué)生的會(huì)從
44、特殊性問(wèn)題引申到一般性來(lái)研究,培養(yǎng)學(xué)生的辯證思維能力. (3) 實(shí)踐能力:培養(yǎng)學(xué)生實(shí)際動(dòng)手能力,綜合利用已有的知識(shí)能力. (4) 數(shù)學(xué)活動(dòng)能力:培養(yǎng)學(xué)生觀察、實(shí)驗(yàn)、探究、驗(yàn)證與交流等數(shù)學(xué)活動(dòng)能力. (5) 創(chuàng)新意識(shí)能力:培養(yǎng)學(xué)生思考問(wèn)題、并能探究發(fā)現(xiàn)一些問(wèn)題的能力,探究解決問(wèn)題的一般的思想、方法和途徑. 練習(xí):第60頁(yè)1、2、3、 作業(yè):第66頁(yè)1、2、 2.2.2 雙曲線的簡(jiǎn)單幾何性質(zhì) ◆ 知識(shí)與技能目標(biāo) 了解平面解析幾何研究的主要問(wèn)題:(1)根據(jù)條件,求出表示曲線的方程;(2)通過(guò)方程,研究曲線的性質(zhì).理解雙曲線的范圍、對(duì)稱性及對(duì)稱軸,對(duì)稱中心、離心率、頂點(diǎn)、漸近線
45、的概念;掌握雙曲線的標(biāo)準(zhǔn)方程、會(huì)用雙曲線的定義解決實(shí)際問(wèn)題;通過(guò)例題和探究了解雙曲線的第二定義,準(zhǔn)線及焦半徑的概念,利用信息技術(shù)進(jìn)一步見(jiàn)識(shí)圓錐曲線的統(tǒng)一定義. ◆ 過(guò)程與方法目標(biāo) (1)復(fù)習(xí)與引入過(guò)程 引導(dǎo)學(xué)生復(fù)習(xí)得到橢圓的簡(jiǎn)單的幾何性質(zhì)的方法,在本節(jié)課中不僅要注意通過(guò)對(duì)雙曲線的標(biāo)準(zhǔn)方程的討論,研究雙曲線的幾何性質(zhì)的理解和應(yīng)用,而且還注意對(duì)這種研究方法的進(jìn)一步地培養(yǎng).①由雙曲線的標(biāo)準(zhǔn)方程和非負(fù)實(shí)數(shù)的概念能得到雙曲線的范圍;②由方程的性質(zhì)得到雙曲線的對(duì)稱性;③由圓錐曲線頂點(diǎn)的統(tǒng)一定義,容易得出雙曲線的頂點(diǎn)的坐標(biāo)及實(shí)軸、虛軸的概念;④應(yīng)用信息技術(shù)的《幾何畫板》探究雙曲線的漸近線問(wèn)題;⑤類比橢
46、圓通過(guò)的思考問(wèn)題,探究雙曲線的扁平程度量橢圓的離心率.〖板書〗§2.2.2雙曲線的簡(jiǎn)單幾何性質(zhì). (2)新課講授過(guò)程 (i)通過(guò)復(fù)習(xí)和預(yù)習(xí),對(duì)雙曲線的標(biāo)準(zhǔn)方程的討論來(lái)研究雙曲線的幾何性質(zhì). 提問(wèn):研究雙曲線的幾何特征有什么意義?從哪些方面來(lái)研究? 通過(guò)對(duì)雙曲線的范圍、對(duì)稱性及特殊點(diǎn)的討論,可以從整體上把握曲線的形狀、大小和位置.要從范圍、對(duì)稱性、頂點(diǎn)、漸近線及其他特征性質(zhì)來(lái)研究曲線的幾何性質(zhì). (ii)雙曲線的簡(jiǎn)單幾何性質(zhì) ①范圍:由雙曲線的標(biāo)準(zhǔn)方程得,,進(jìn)一步得:,或.這說(shuō)明雙曲線在不等式,或所表示的區(qū)域; ②對(duì)稱性:由以代,以代和代,且以代這三個(gè)方面來(lái)研究雙曲線的標(biāo)準(zhǔn)方程
47、發(fā)生變化沒(méi)有,從而得到雙曲線是以軸和軸為對(duì)稱軸,原點(diǎn)為對(duì)稱中心; ③頂點(diǎn):圓錐曲線的頂點(diǎn)的統(tǒng)一定義,即圓錐曲線的對(duì)稱軸與圓錐曲線的交點(diǎn)叫做圓錐曲線的頂點(diǎn).因此雙曲線有兩個(gè)頂點(diǎn),由于雙曲線的對(duì)稱軸有實(shí)虛之分,焦點(diǎn)所在的對(duì)稱軸叫做實(shí)軸,焦點(diǎn)不在的對(duì)稱軸叫做虛軸; ④漸近線:直線叫做雙曲線的漸近線; ⑤離心率: 雙曲線的焦距與實(shí)軸長(zhǎng)的比叫做雙曲線的離心率(). (iii)例題講解與引申、擴(kuò)展 例3 求雙曲線的實(shí)半軸長(zhǎng)和虛半軸長(zhǎng)、焦點(diǎn)的坐標(biāo)、離心率、漸近線方程. 分析:由雙曲線的方程化為標(biāo)準(zhǔn)方程,容易求出.引導(dǎo)學(xué)生用雙曲線的實(shí)半軸長(zhǎng)、虛半軸長(zhǎng)、離心率、焦點(diǎn)和漸近線的定義即可求相關(guān)量或式子,
48、但要注意焦點(diǎn)在軸上的漸近線是. 擴(kuò)展:求與雙曲線共漸近線,且經(jīng)過(guò)點(diǎn)的雙曲線的標(biāo)準(zhǔn)方及離心率. 解法剖析:雙曲線的漸近線方程為.①焦點(diǎn)在軸上時(shí),設(shè)所求的雙曲線為,∵點(diǎn)在雙曲線上,∴,無(wú)解;②焦點(diǎn)在軸上時(shí),設(shè)所求的雙曲線為,∵點(diǎn)在雙曲線上,∴,因此,所求雙曲線的標(biāo)準(zhǔn)方程為,離心率.這個(gè)要進(jìn)行分類討論,但只有一種情形有解,事實(shí)上,可直接設(shè)所求的雙曲線的方程為. 例4 雙曲線型冷卻塔的外形,是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所成的曲面如圖(1),它的最小半徑為,上口半徑為,下口半徑為,高為.試選擇適當(dāng)?shù)淖鴺?biāo)系,求出雙曲線的方程(各長(zhǎng)度量精確到). 解法剖析:建立適當(dāng)?shù)闹苯亲鴺?biāo)系,設(shè)雙曲線的標(biāo)準(zhǔn)方程為
49、,算出的值;此題應(yīng)注意兩點(diǎn):①注意建立直角坐標(biāo)系的兩個(gè)原則;②關(guān)于的近似值,原則上在沒(méi)有注意精確度時(shí),看題中其他量給定的有效數(shù)字來(lái)決定. 引申:如圖所示,在處堆放著剛購(gòu)買的草皮,現(xiàn)要把這些草皮沿著道路或送到呈矩形的足球場(chǎng)中去鋪墊,已知,,,.能否在足球場(chǎng)上畫一條“等距離”線,在“等距離”線的兩側(cè)的區(qū)域應(yīng)該選擇怎樣的線路?說(shuō)明理由. 解題剖析:設(shè)為“等距離”線上任意一點(diǎn),則,即(定值),∴“等距離”線是以、為焦點(diǎn)的雙曲線的左支上的一部分,容易“等距離”線方程為.理由略. 例5 如圖,設(shè)與定點(diǎn)的距離和它到直線:的距離的比是常數(shù),求點(diǎn)的軌跡方程. 分析:若設(shè)點(diǎn),則,到直線:的距離,則容易得點(diǎn)
50、的軌跡方程. 引申:用《幾何畫板》探究點(diǎn)的軌跡:雙曲線 若點(diǎn)與定點(diǎn)的距離和它到定直線:的距離比是常數(shù),則點(diǎn)的軌跡方程是雙曲線.其中定點(diǎn)是焦點(diǎn),定直線:相應(yīng)于的準(zhǔn)線;另一焦點(diǎn),相應(yīng)于的準(zhǔn)線:. ◆ 情感、態(tài)度與價(jià)值觀目標(biāo) 在合作、互動(dòng)的教學(xué)氛圍中,通過(guò)師生之間、學(xué)生之間的交流、合作、互動(dòng)實(shí)現(xiàn)共同探究,教學(xué)相長(zhǎng)的教學(xué)活動(dòng)情境,結(jié)合教學(xué)內(nèi)容,培養(yǎng)學(xué)生科學(xué)探索精神、審美觀和科學(xué)世界觀,激勵(lì)學(xué)生創(chuàng)新.必須讓學(xué)生認(rèn)同和掌握:雙曲線的簡(jiǎn)單幾何性質(zhì),能由雙曲線的標(biāo)準(zhǔn)方程能直接得到雙曲線的范圍、對(duì)稱性、頂點(diǎn)、漸近線和離心率;必須讓學(xué)生認(rèn)同與理解:已知幾何圖形建立直角坐標(biāo)系的兩個(gè)原則,①充分利用圖形對(duì)稱性
51、,②注意圖形的特殊性和一般性;必須讓學(xué)生認(rèn)同與熟悉:取近似值的兩個(gè)原則:①實(shí)際問(wèn)題可以近似計(jì)算,也可以不近似計(jì)算,②要求近似計(jì)算的一定要按要求進(jìn)行計(jì)算,并按精確度要求進(jìn)行,沒(méi)有作說(shuō)明的按給定的有關(guān)量的有效數(shù)字處理;讓學(xué)生參與并掌握利用信息技術(shù)探究點(diǎn)的軌跡問(wèn)題,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和掌握利用先進(jìn)教學(xué)輔助手段的技能. ◆能力目標(biāo) (1) 分析與解決問(wèn)題的能力:通過(guò)學(xué)生的積極參與和積極探究,培養(yǎng)學(xué)生的分析問(wèn)題和解決問(wèn)題的能力. (2) 思維能力:會(huì)把幾何問(wèn)題化歸成代數(shù)問(wèn)題來(lái)分析,反過(guò)來(lái)會(huì)把代數(shù)問(wèn)題轉(zhuǎn)化為幾何問(wèn)題來(lái)思考;培養(yǎng)學(xué)生的會(huì)從特殊性問(wèn)題引申到一般性來(lái)研究,培養(yǎng)學(xué)生的辯證思維能力.
52、(3) 實(shí)踐能力:培養(yǎng)學(xué)生實(shí)際動(dòng)手能力,綜合利用已有的知識(shí)能力. (4) 創(chuàng)新意識(shí)能力:培養(yǎng)學(xué)生思考問(wèn)題、并能探究發(fā)現(xiàn)一些問(wèn)題的能力,探究解決問(wèn)題的一般的思想、方法和途徑. 練習(xí):第66頁(yè)1、2、3、4、5 作業(yè):第3、4、6 補(bǔ)充: 3.課題:雙曲線第二定義 教學(xué)目標(biāo): 11111.知識(shí)目標(biāo):掌握雙曲線第二定義與準(zhǔn)線的概念,并會(huì)簡(jiǎn)單的應(yīng)用。 11112.能力目標(biāo):培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力及探索和創(chuàng)新意識(shí)。 教學(xué)重點(diǎn):雙曲線的第二定義 教學(xué)難點(diǎn):雙曲線的第二定義及應(yīng)用. 教學(xué)方法:類比法(類比橢圓的第二定義) 教學(xué)過(guò)程:11
53、1111111111111111111111111111 一、復(fù)習(xí)引入: 1、 (1)、雙曲線的定義:平面上到兩定點(diǎn)距離之差的絕對(duì)值等于常數(shù)(小于)的點(diǎn)的 軌跡叫做雙曲線.定點(diǎn)叫做雙曲線的焦點(diǎn),兩焦點(diǎn)的距離叫做雙曲線的焦距。 (2)、雙曲線的標(biāo)準(zhǔn)方程: 焦點(diǎn)在x軸: 焦點(diǎn)在y軸: 其中 2、 對(duì)于焦點(diǎn)在x軸上的雙曲線的有關(guān)性質(zhì): (1)、焦點(diǎn):F1(-c,0),F2(c,0);(2)、漸近線:;(3)、離心率:>1 3、今節(jié)課我們來(lái)學(xué)習(xí)雙曲線的另一定義。(板書課題:雙曲線第二定義) 二、新課教學(xué): F2 F1 H H x o y 1、引例(課本P64例
54、6):點(diǎn)M(x,y) 與定點(diǎn)F(5,0)距離和它到定直線的距離之比是常數(shù),求點(diǎn)M的軌跡方程. 分析:利用求軌跡方程的方法。 解:設(shè)是點(diǎn)M到直線的距離,根據(jù)題意,所求軌跡就是集合P={M|}, 即 所以,點(diǎn)M的軌跡是實(shí)軸、虛軸長(zhǎng)分別為8、6的雙曲線。 由例6可知:定點(diǎn)F(5,0)為該雙曲線的焦點(diǎn),定直線為, 常數(shù)為離心率>1. [提出問(wèn)題]:(從特殊到一般)將上題改為:點(diǎn)M(x,y)與定點(diǎn)F(c,0)距離和它到定直線的距離之比是常數(shù),求點(diǎn)M的軌跡方程。 解:設(shè)是點(diǎn)M到直線的距離, 根據(jù)題意,所求軌跡就是集合P={M|}, 即 化簡(jiǎn)得兩邊同
55、時(shí)除以得 2、小結(jié): 雙曲線第二定義:當(dāng)動(dòng)點(diǎn)M(x,y) 到一定點(diǎn)F(c,0)的距離和它到一定直線的距離之比是常數(shù)時(shí),這個(gè)動(dòng)點(diǎn)M(x,y)的軌跡是雙曲線。其中定點(diǎn)F(c,0)是雙曲線的一個(gè)焦點(diǎn),定直線叫雙曲線的一條準(zhǔn)線,常數(shù)e是雙曲線的離心率。雙曲線上任一點(diǎn)到焦點(diǎn)的線段稱為焦半徑。例如PF是雙曲線的焦半徑。 (P65思考)與橢圓的第二定義比較,你有什么發(fā)現(xiàn)?(讓學(xué)生討論) 答:只是常數(shù)的取值范圍不同,橢圓的,而雙曲線的. 三、課堂練習(xí) 1. 求的準(zhǔn)線方程、兩準(zhǔn)線間的距離。 解:由可知,焦點(diǎn)在x軸上,且所以準(zhǔn)線方程為:;故兩準(zhǔn)線的距離為. 2、(2006年廣東高考第8
56、題選擇題)已知雙曲線 3x 2-y 2 = 9,則雙曲線右支上的點(diǎn) P 到右焦點(diǎn) 的距離與點(diǎn) P 到右準(zhǔn)線的距離之比等于( )。 (A) (B) (C) 2 (D) 4 解: 3、如果雙曲線上的一點(diǎn)P到左焦點(diǎn)的距離為9,則P到右準(zhǔn)線的距離是____ 解: P到左準(zhǔn)線的距離為m,由雙曲線方程可知a=5,b=12,c=13, 準(zhǔn)線方程為 根據(jù)雙曲線第二定義得, 。 4、雙曲線兩準(zhǔn)線把兩焦點(diǎn)連線段三等分,求e. 解:由題意可知,即 所以 5. 雙曲線的 >,>漸近線與一條準(zhǔn)線圍成的三角形的面積是 . 解:由題意可知
57、,一條準(zhǔn)線方程為:,漸近線方程為 因?yàn)楫?dāng)時(shí) 所以所求的三角形面積為: 四、鞏固練習(xí): 1.已知雙曲線= 1(a>0,b>0)的右焦點(diǎn)為F,右準(zhǔn)線與一條漸近線交于A,△OAF面積為(O為原點(diǎn)),則兩條漸近線夾角為( ) A.30° B.45° C.60° D.90° 解:由題意可得,△OAF 的底邊|OC|=c,高h(yuǎn)= S△OAF=因此可知該雙曲線為等軸雙曲
58、線。所以兩條漸近線夾角為90°。 2. P P H H F2 x F1 o y A 。 五、教學(xué)反思: (1) 知識(shí)內(nèi)容:雙曲線的第二定義及應(yīng)用。 (2) 數(shù)學(xué)方法:類比法, (3) 數(shù)學(xué)思想: 從特殊到一般 六、作業(yè): 1、雙曲線的一條準(zhǔn)線是y=1,則的值。 2、求漸近線方程是4x,準(zhǔn)線方程是5y的雙曲線方程. 3、已知雙曲線的離心率為2,準(zhǔn)線方程為,焦點(diǎn)F(2,0),求雙曲線標(biāo)準(zhǔn)方程. 4、(請(qǐng)你編題)若雙曲線標(biāo)準(zhǔn)方程為__上一點(diǎn)p到(左,右)焦點(diǎn)的距離是___則點(diǎn)p到(左, 右)準(zhǔn)線的距離___. 七
59、、板書設(shè)計(jì) 課題:雙曲線的第二定義及應(yīng)用 1、 復(fù)習(xí)引入 (1)、雙曲線的定義 (2)、雙曲線的標(biāo)準(zhǔn)方程 (3)、關(guān)于焦點(diǎn)在x軸上的雙曲線的有關(guān)性質(zhì) 2、 新內(nèi)容 雙曲線第二定義: 例題: 課堂練習(xí): 1、 2、 3、 4、 5、 課后練習(xí): 1、 2、 作業(yè): 1、 2、 3、 4、 2.4拋物線 一 教學(xué)設(shè)想 1 2. 3 1拋物線及標(biāo)準(zhǔn)方程 (1) 教具的準(zhǔn)備 問(wèn)題1:同學(xué)們對(duì)拋物線已有了哪些認(rèn)識(shí)? 在物理中,拋物線被認(rèn)為是拋射物體的運(yùn)行軌道;在數(shù)學(xué)中,拋物線是二次函數(shù)的圖象? 問(wèn)題2:在二次函數(shù)中研究的
60、拋物線有什么特征? 在二次函數(shù)中研究的拋物線,它的對(duì)稱軸是平行于y軸、開(kāi)口向上或開(kāi)口向下兩種情形.引導(dǎo)學(xué)生進(jìn)一步思考:如果拋物線的對(duì)稱軸不平行于y軸,那么就不能作為二次函數(shù)的圖象來(lái)研究了.今天,我們突破函數(shù)研究中這個(gè)限制,從更一般意義上來(lái)研究拋物線. 通過(guò)提問(wèn)來(lái)激發(fā)學(xué)生的探究欲望,首先研究拋物線的定義,教師可以用直觀的教具叫學(xué)生參與進(jìn)行演示,再由學(xué)生歸納出拋物線的定義. (2) 拋物線的標(biāo)準(zhǔn)方程 設(shè)定點(diǎn)F到定直線l的距離為p(p為已知數(shù)且大于0).下面,我們來(lái)求拋物線的方程.怎樣選擇直角坐標(biāo)系,才能使所得的方程取較簡(jiǎn)單的形式呢? 讓學(xué)生議論一下,教師巡視,啟發(fā)輔導(dǎo),最后簡(jiǎn)單小結(jié)建立
61、直角坐標(biāo)系的方案 方案1:(由第一組同學(xué)完成,請(qǐng)一優(yōu)等生演板.)以l為y軸,過(guò)點(diǎn)F與直線l垂直的直線為x軸建立直角坐標(biāo)系(圖2-30).設(shè)定點(diǎn)F(p,0),動(dòng)點(diǎn)M的坐標(biāo)為(x,y),過(guò)M作MD⊥y軸于D,拋物線的集合為:p={M||MF|=|MD|}. 化簡(jiǎn)后得:y2=2px-p2(p>0). 方案2:(由第二組同學(xué)完成,請(qǐng)一優(yōu)等生演板) 以定點(diǎn)F為原點(diǎn),平行l(wèi)的直線為y軸建立直角坐標(biāo)系(圖2-31).設(shè)動(dòng)點(diǎn)M的坐標(biāo)為(x,y),且設(shè)直線l的方程為x=-p,定點(diǎn)F(0,0),過(guò)M作MD⊥l于D,拋物線的集合為: p={M||MF|=|MD|}. 化簡(jiǎn)得:y2=2px+p
62、2(p>0). 方案3:(由第三、四組同學(xué)完成,請(qǐng)一優(yōu)等生演板.) 取過(guò)焦點(diǎn)F且垂直于準(zhǔn)線l的直線為x軸,x軸與l交于K,以線段KF的垂直平分線為y軸,建立直角坐標(biāo)系(圖2-32). 拋物線上的點(diǎn)M(x,y)到l的距離為d,拋物線是集合p={M||MF|=d}. 化簡(jiǎn)后得:y2=2px(p>0). (3) 例題講解與引申 教材中選取了2個(gè)例題,例1是讓學(xué)生會(huì)應(yīng)用公式求拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程。例2是應(yīng)用方面的問(wèn)題,關(guān)鍵是由題意設(shè)出拋物線的方程即可。 2 2。 3 2 拋物線的幾何性質(zhì) (1) 拋物線的幾何性質(zhì) 下
63、面我們類比橢圓、雙曲線的幾何性質(zhì),從拋物線的標(biāo)準(zhǔn)方程y2=2px(p>0)出發(fā)來(lái)研究它的幾何性質(zhì). (二)幾何性質(zhì) 怎樣由拋物線的標(biāo)準(zhǔn)方程確定它的幾何性質(zhì)?以y2=2px(p>0)為例,用小黑板給出下表,請(qǐng)學(xué)生對(duì)比、研究和填寫. (2) 例題的講解與引申 例3有2種解法;解法一運(yùn)用了拋物線的重要性質(zhì):拋物線上任一點(diǎn)到焦點(diǎn)的距離(即此點(diǎn)的焦半徑)等于此點(diǎn)到準(zhǔn)線的距離.可得焦半徑公式設(shè)P(x0, 這個(gè)性質(zhì)在解決許多有關(guān)焦點(diǎn)的弦的問(wèn)題中經(jīng)常用到,因此必須熟練掌握. (2)由焦半徑不難得出焦點(diǎn)弦長(zhǎng)公式:設(shè)AB是過(guò)拋物線焦點(diǎn)的一條弦(焦點(diǎn)弦),若A(x1,y1)、B(x2,
64、y2)則有|AB|=x1+x2+p.特別地:當(dāng)AB⊥x軸,拋物線的通徑|AB|=2p 例4涉及直線與圓錐曲線相交時(shí),常把直線與圓錐曲線方程聯(lián)立,消去一個(gè)變量,得到關(guān)于另一變量的一元二次方程,然后用韋達(dá)定理求解,這是解決這類問(wèn)題的一種常用方法. 附 教學(xué)教案 2.4.1拋物線及標(biāo)準(zhǔn)方程 知識(shí)與技能目標(biāo) 使學(xué)生掌握拋物線的定義、拋物線的標(biāo)準(zhǔn)方程及其推導(dǎo)過(guò)程. 要求學(xué)生進(jìn)一步熟練掌握解析幾何的基本思想方法,提高分析、對(duì)比、概括、轉(zhuǎn)化等方面的能力. 過(guò)程與方法目標(biāo) 情感,態(tài)度與價(jià)值觀目標(biāo) (1)培養(yǎng)學(xué)生用對(duì)稱的美學(xué)思維來(lái)體現(xiàn)數(shù)學(xué)的
65、和諧美。 (2)培養(yǎng)學(xué)生觀察,實(shí)驗(yàn),探究與交流的數(shù)學(xué)活動(dòng)能力。 能力目標(biāo):(1)重視基礎(chǔ)知識(shí)的教學(xué)、基本技能的訓(xùn)練和能力的培養(yǎng); (2)啟發(fā)學(xué)生能夠發(fā)現(xiàn)問(wèn)題和提出問(wèn)題,善于獨(dú)立思考,學(xué)會(huì)分析問(wèn)題和創(chuàng)造地解決問(wèn)題; ?。?)通過(guò)教師指導(dǎo)發(fā)現(xiàn)知識(shí)結(jié)論,培養(yǎng)學(xué)生抽象概括能力和邏輯思維能力 (1) 復(fù)習(xí)與引入過(guò)程 回憶平面內(nèi)與一個(gè)定點(diǎn)F的距離和一條定直線l的距離的比是常數(shù)e的軌跡,當(dāng)0<e<1時(shí)是橢圓,當(dāng)e>1時(shí)是雙曲線,那么當(dāng)e=1時(shí),它又是什么曲線? 2.簡(jiǎn)單實(shí)驗(yàn) 如圖2-29,把一根直尺固定在畫圖板內(nèi)直線l的位置上,一塊三角板的一條直角邊緊靠直尺的邊緣;把一條
66、繩子的一端固定于三角板另一條直角邊上的點(diǎn)A,截取繩子的長(zhǎng)等于A到直線l的距離AC,并且把繩子另一端固定在圖板上的一點(diǎn)F;用一支鉛筆扣著繩子,緊靠著三角板的這條直角邊把繩子繃緊,然后使三角板緊靠著直尺左右滑動(dòng),這樣鉛筆就描出一條曲線,這條曲線叫做拋物線.反復(fù)演示后,請(qǐng)同學(xué)們來(lái)歸納拋物線的定義,教師總結(jié). (3) 新課講授過(guò)程 (i)由上面的探究過(guò)程得出拋物線的定義 《板書》平面內(nèi)與一定點(diǎn)F和一條定直線l的距離相等的點(diǎn)的軌跡叫做拋物線(定點(diǎn)F不在定直線l上).定點(diǎn)F叫做拋物線的焦點(diǎn),定直線l叫做拋物線的準(zhǔn)線. (ii) 拋物線標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程 引導(dǎo)學(xué)生分析出:方案3中得出的方程作為拋物線的標(biāo)準(zhǔn)方程.這是因?yàn)檫@個(gè)方程不僅具有較簡(jiǎn)的形式,而方程中的系數(shù)有明確的幾何意義:一次項(xiàng)系數(shù)是焦點(diǎn)到準(zhǔn)線距離的2倍. 由于焦點(diǎn)和準(zhǔn)線在坐標(biāo)系下的不同分布情況,拋物線的標(biāo)準(zhǔn)方程有四種情形(列表如下): 將上表畫在小黑板上,講解時(shí)出示小黑板,并講清為什么會(huì)出現(xiàn)四種不同的情形,四種情形中P>0;并指出圖形的位置特征和方程的形式應(yīng)結(jié)合起來(lái)記憶.即:當(dāng)對(duì)稱軸為x軸時(shí),方程等號(hào)右端為±2px,相應(yīng)地左
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 川渝旅游日記成都重慶城市介紹推薦景點(diǎn)美食推薦
- XX國(guó)有企業(yè)黨委書記個(gè)人述責(zé)述廉報(bào)告及2025年重點(diǎn)工作計(jì)劃
- 世界濕地日濕地的含義及價(jià)值
- 20XX年春節(jié)節(jié)后復(fù)工安全生產(chǎn)培訓(xùn)人到場(chǎng)心到崗
- 大唐女子圖鑒唐朝服飾之美器物之美繪畫之美生活之美
- 節(jié)后開(kāi)工第一課輕松掌握各要點(diǎn)節(jié)后常見(jiàn)的八大危險(xiǎn)
- 廈門城市旅游介紹廈門景點(diǎn)介紹廈門美食展示
- 節(jié)后開(kāi)工第一課復(fù)工復(fù)產(chǎn)十注意節(jié)后復(fù)工十檢查
- 傳統(tǒng)文化百善孝為先孝道培訓(xùn)
- 深圳城市旅游介紹景點(diǎn)推薦美食探索
- 節(jié)后復(fù)工安全生產(chǎn)培訓(xùn)勿忘安全本心人人講安全個(gè)個(gè)會(huì)應(yīng)急
- 預(yù)防性維修管理
- 常見(jiàn)閥門類型及特點(diǎn)
- 設(shè)備預(yù)防性維修
- 2.乳化液泵工理論考試試題含答案