2019-2020年高三數(shù)學 考點總動員06 基本初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、二次函數(shù)) 文(含解析).doc
《2019-2020年高三數(shù)學 考點總動員06 基本初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、二次函數(shù)) 文(含解析).doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學 考點總動員06 基本初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、二次函數(shù)) 文(含解析).doc(25頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學 考點總動員06 基本初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、二次函數(shù)) 文(含解析) 【考點分類】 熱點1 指數(shù)函數(shù)、對數(shù)函數(shù) 1.【xx高考安徽卷文第5題】設(shè)則( ) A. B. C. D. 2.【xx高考安徽卷文第11題】________. 3.【xx高考北京卷文第2題】下列函數(shù)中,定義域是且為增函數(shù)的是( ) A. B. C. D. 4. 【xx高考北京卷文第6題】已知函數(shù),在下列區(qū)間中,包含零點的區(qū)間是( ) A. B. C. D. 5.【xx高考福建卷文第8題】若函數(shù)的圖象如右圖所示,則下列函數(shù)正確的是 ( ) 6.【xx高考湖南卷文第15題】若是偶函數(shù),則____________. 【答案】 【解析】因為函數(shù)為偶函數(shù),所以 ,故填. 【考點定位】奇偶性 對數(shù)運算 7.【xx高考江蘇卷第10題】已知函數(shù),若對于任意的都有,則實數(shù)的取值范圍為 . 8. 【xx高考江蘇卷第13題】已知是定義在上且周期為3的函數(shù),當時,,若函數(shù)在區(qū)間上有10個零點(互不相同),則實數(shù)的取值范圍是 . 【考點】函數(shù)的零點,周期函數(shù)的性質(zhì),函數(shù)圖象的交點問題. 9.【xx高考江西卷文第4題】已知函數(shù),若,則( ) 10.【xx高考遼寧卷文第3題】已知,,則( ) A. B. C. D. 11.【xx高考全國1卷文第15題】設(shè)函數(shù)則使得成立的的取值范圍是________. 【答案】 【解析】 12. 【xx高考山東卷文第3題】函數(shù)的定義域為( ) A. B. C. D. 13.【xx高考山東卷文第5題】已知實數(shù)滿足,則下列關(guān)系式恒成立的是( ) A. B. C. D. 14. 【xx高考山東卷文第6題】已知函數(shù)為常數(shù),其中的圖象如右圖,則下列結(jié)論成立的是( ) A. B. C. D. 【答案】 15.【xx高考四川卷文第7題】已知,,,,則下列等式一定成立的是( ) A、 B、 C、 D、 16.【xx高考天津卷卷文第4題】設(shè)則( ) A. B. C. D. 17. 【xx高考天津卷卷文第12題】函數(shù)的單調(diào)遞減區(qū)間是________. 18.【xx高考浙江卷文第8題】在同一坐標系中,函數(shù),的圖象可能是( ) 【方法規(guī)律】 1.求解與指數(shù)函數(shù)有關(guān)的復合函數(shù)問題,首先要熟知指數(shù)函數(shù)的定義域、值域、單調(diào)性等相關(guān)性質(zhì),其次要明確復合函數(shù)的構(gòu)成,涉及值域、單調(diào)區(qū)間、最值等問題時,都要借助“同增異減”這一性質(zhì)分析判斷,最終將問題歸納為內(nèi)層函數(shù)相關(guān)的問題加以解決. 2.對數(shù)式的化簡與求值的常用思路(1)先利用冪的運算把底數(shù)或真數(shù)進行變形,化成分數(shù)指數(shù)冪的形式,使冪的底數(shù)最簡,然后正用對數(shù)運算法則化簡合并. (2)先將對數(shù)式化為同底數(shù)對數(shù)的和、差、倍數(shù)運算,然后逆用對數(shù)的運算法則,轉(zhuǎn)化為同底對數(shù)真數(shù)的積、商、冪再運算. 3.比較對數(shù)值大小時若底數(shù)相同,構(gòu)造相應的對數(shù)函數(shù),利用單調(diào)性求解;若底數(shù)不同,可以找中間量,也可以用換底公式化成同底的對數(shù)再比較. 5.利用對數(shù)函數(shù)的性質(zhì),求與對數(shù)函數(shù)有關(guān)的復合函數(shù)的值域和單調(diào)性問題,必須弄清三方面的問題,一是定義域,所有問題都必須在定義域內(nèi)討論;二是底數(shù)與1的大小關(guān)系;三是復合函數(shù)的構(gòu)成,即它是由哪些基本初等函數(shù)復合而成的. 【解題技巧】 1.圖像題要注意根據(jù)圖像的單調(diào)性和特殊點判斷 2.指數(shù)形式的幾個數(shù)字比大小要注意構(gòu)造相應的指數(shù)函數(shù)和冪函數(shù) 3.判斷指數(shù)函數(shù)圖象上底數(shù)大小的問題,可以先通過令x=1得到底數(shù)的值再進行比較. 4.指數(shù)函數(shù)y=ax (a>0,a≠1)的性質(zhì)和a的取值有關(guān),一定要分清a>1與00的解集為________. 熱點2 冪函數(shù)、二次函數(shù) 1.【xx高考北京卷文第8題】加工爆米花時,爆開且不糊的粒數(shù)占加工總粒數(shù)的百分比稱為“可食用率”.在特定條件下,可食用率 與加工時間(單位:分鐘)滿足的函數(shù)關(guān)系(、、是常數(shù)),下圖記錄了三次實 驗的數(shù)據(jù).根據(jù)上述函數(shù)模型和實驗數(shù)據(jù),可以得到最佳加工時間為( ) A.分鐘 B.分鐘 C.分鐘 D.分鐘 【考點】本小題以實際應用為背景,主要考查二次函數(shù)的解析式的求解、二次函數(shù)的最值等基礎(chǔ)知識,考查同學們分析問題與解決問題的能力. 2.【xx高考福建卷文第15題】函數(shù)的零點個數(shù)是__________. 考點:分段函數(shù),函數(shù)的零點,函數(shù)的圖象和性質(zhì). 3.【xx高考湖北卷文第9題】已知是定義在上的奇函數(shù),當時,,則函數(shù)的零點的集合為( ) A. B. C. D. 由解得或;由解得, 所以函數(shù)的零點的集合為,故選D. 考點:函數(shù)的奇偶性的運用,分段函數(shù),函數(shù)的零點,一元二次方程的解法,難度中等. 4.【xx高考天津卷卷文第14題】已知函數(shù)若函數(shù)恰有4個零點,則實數(shù)的取值范圍為_______ 【答案】 【解析】 試題分析: o x y 5.【xx高考浙江卷文第16題】已知實數(shù)、、滿足,,則的最大值為為_______. 【方法規(guī)律】 1.二次函數(shù)在閉區(qū)間上的最值與拋物線的開口方向、對稱軸位置、閉區(qū)間三個要素有關(guān); 2.常結(jié)合二次函數(shù)在該區(qū)間上的單調(diào)性或圖象求解,在區(qū)間的端點或二次函數(shù)圖象的頂點處取得最值.二次函數(shù)、二次方程、二次不等式之間可以相互轉(zhuǎn)化.一般規(guī)律(1)在研究一元二次方程根的分布問題時,常借助于二次函數(shù)的圖象數(shù)形結(jié)合來解,一般從①開口方向;②對稱軸位置;③判別式;④端點函數(shù)值符號四個方面分析.(2)在研究一元二次不等式的有關(guān)問題時,一般需借助于二次函數(shù)的圖象、性質(zhì)求解. 3.冪函數(shù)y=xα的圖象與性質(zhì)由于α的值不同而比較復雜,一般從兩個方面考查 (1)α的正負:α>0時,圖象過原點和(1,1),在第一象限的圖象上升;α<0時,圖象不過原點,在第一 象限的圖象下降,反之也成立. (2)曲線在第一象限的凹凸性:α>1時,曲線下凸;0<α<1時,曲線上凸;α<0時,曲線下凸. 4.二次函數(shù)、二次方程、二次不等式間相互轉(zhuǎn)化的一般規(guī)律: (1)在研究一元二次方程根的分布問題時,常借助于二次函數(shù)的圖象數(shù)形結(jié)合來解,一般從:①開口方向;②對稱軸位置;③判別式;④端點函數(shù)值符號四個方面分析. (2)在研究一元二次不等式的有關(guān)問題時,一般需借助于二次函數(shù)的圖象、性質(zhì)求解. 5.冪函數(shù)y=xα(α∈R)圖象的特征 α>0時,圖象過原點和(1,1),在第一象限的圖象上升;α<0時,圖象不過原點,在第一象限的圖象下降,反之也成立. 【解題技巧】 1. 做二次函數(shù)類型題是注意數(shù)形結(jié)合的應用,畫出函數(shù)的草圖能幫助我們理清思路 2. 二次函數(shù)中如果含有參數(shù),往往要進行分類討論 3.對于函數(shù)y=ax2+bx+c,要認為它是二次函數(shù),就必須滿足a≠0,當題目條件中未說明a≠0時,就要討論a=0和a≠0兩種情況. 4.冪函數(shù)的圖象一定會出現(xiàn)在第一象限內(nèi),一定不會出現(xiàn)在第四象限,至于是否出現(xiàn)在第二、三象限內(nèi),要看函數(shù)的奇偶性;冪函數(shù)的圖象最多只能同時出現(xiàn)在兩個象限內(nèi);如果冪函數(shù)圖象與坐標軸相交,則交點一定是原點. 【易錯點睛】 1.注意冪函數(shù)與指數(shù)函數(shù)的聯(lián)系與區(qū)別 2.冪函數(shù)的增減與α的關(guān)系 3.對于函數(shù)y=ax2+bx+c,要認為它是二次函數(shù),就必須滿足a≠0,當題目條件中未說明a≠0時,就要討論a=0和a≠0兩種情況. 4.冪函數(shù)的圖象一定會出現(xiàn)在第一象限內(nèi),一定不會出現(xiàn)在第四象限,至于是否出現(xiàn)在第二、三象限內(nèi),要看函數(shù)的奇偶性;冪函數(shù)的圖象最多只能同時出現(xiàn)在兩個象限內(nèi);如果冪函數(shù)圖象與坐標軸相交,則交點一定是原點. 例1:二次函數(shù)f(x)=ax2+(2a-1)x-3在區(qū)間[-,2]上的最大值為1,求實數(shù)a的值. 解:若f(-)=1,解得a=-,但此時a<0,且x0==-∈[-,2],故不可能; 若f(2)=1,解得a=, 此時a>0且x0==-∈[-,2]滿足; 若f()=1,解得a=, 此時必須有 檢驗知,a=-滿足,a=不滿足. 綜上,a=或a=-. 【易錯點】形式是二次函數(shù)的解析式中注意討論二次項系數(shù)a的取值 例2:(2011年蘇州調(diào)研)如圖是函數(shù)(m、n∈N*,m、n互質(zhì))的圖象,則下列判斷正確的是________. ①m、n是奇數(shù),且<1 ②m是偶數(shù),n是奇數(shù)且>1 ③m是偶數(shù),n是奇數(shù)且<1 ④m是奇數(shù),n是偶數(shù)且>1 解析:將分數(shù)指數(shù)式化為根式y(tǒng)=,由定義域為R,值域為[0,+∞)知n為奇數(shù),m為偶數(shù),又由冪函數(shù)y=xα,當α>1時,圖象在第一象限的部分下凸,當0<α<1時,圖象在第一象限的部分上凸,故③正確. 答案:③ 【易錯點】冪函數(shù)的單調(diào)性和a有關(guān),注意a與0和1的比較 【考點剖析】 1.最新考試說明: 1.理解指數(shù)冪的概念,理解指數(shù)函數(shù)的單調(diào)性,會解決與指數(shù)函數(shù)性質(zhì)有關(guān)的問題. 2.理解對數(shù)的概念及其運算性質(zhì),會用換底公式將一般對數(shù)轉(zhuǎn)化為自然對數(shù)或常用對數(shù);了解對數(shù)在簡化運算中的作用. 3.理解對數(shù)函數(shù)的概念,能解決與對數(shù)函數(shù)性質(zhì)有關(guān)的問題. 4.結(jié)合函數(shù)y=x,y=x2,y=x3,y=x,y=的圖象,了解它們的變化情況. 2.命題方向預測: 1.指數(shù)函數(shù)的概念、圖象與性質(zhì)是近幾年高考的熱點. 2.通過具體問題考查指數(shù)函數(shù)的圖象與性質(zhì),或利用指數(shù)函數(shù)的圖象與性質(zhì)解決一些實際問題是重點,也是難點,同時考查分類討論思想和數(shù)形結(jié)合思想. 3.高考考查的熱點是對數(shù)式的運算和對數(shù)函數(shù)的圖象、性質(zhì)的綜合應用,同時考查分類討論、數(shù)形結(jié)合、函數(shù)與方程思想. 4.關(guān)于冪函數(shù)常以5種冪函數(shù)為載體,考查冪函數(shù)的概念、圖象與性質(zhì),多以小題形式出現(xiàn),屬容易題. 5.二次函數(shù)的圖象及性質(zhì)是近幾年高考的熱點;用三個“二次”間的聯(lián)系解決問題是重點,也是難點. 6.題型以選擇題和填空題為主,若與其他知識點交匯,則以解答題的形式出現(xiàn). 3. 課本結(jié)論總結(jié): 指數(shù)與指數(shù)函數(shù) 1.分數(shù)指數(shù)冪 (1)規(guī)定:正數(shù)的正分數(shù)指數(shù)冪的意義是a=(a>0,m,n∈N*,且n>1);正數(shù)的負分數(shù)指數(shù)冪的意義是a-=(a>0,m,n∈N*,且n>1);0的正分數(shù)指數(shù)冪等于0;0的負分數(shù)指數(shù)冪沒有意義. (2)有理指數(shù)冪的運算性質(zhì):aras=ar+s,(ar)s=ars,(ab)r=arbr,其中a>0,b>0,r,s∈Q. 2.指數(shù)函數(shù)的圖象與性質(zhì) 對數(shù)與對數(shù)函數(shù) 1.對數(shù)的概念 如果ax=N(a>0且a≠1),那么數(shù)x叫做以a為底N的對數(shù),記作x=logaN,其中__a__叫做對數(shù)的底數(shù),__N__叫做真數(shù). 2.對數(shù)的性質(zhì)與運算法則 (1)對數(shù)的運算法則 如果a>0且a≠1,M>0,N>0,那么 ①loga(MN)=logaM+logaN;②loga=logaM-logaN; ③logaMn=nlogaM (n∈R);④logamMn=logaM. (2)對數(shù)的性質(zhì) ①alogaN=__N__;②logaaN=__N__(a>0且a≠1). (3)對數(shù)的重要公式 ①換底公式:logbN= (a,b均大于零且不等于1); ②logab=,推廣logab·logbc·logcd=logad. 3.對數(shù)函數(shù)的圖象與性質(zhì) 二次函數(shù)與冪函數(shù) 1.二次函數(shù) (1)二次函數(shù)解析式的三種形式 ①一般式:f(x)=ax2+bx+c(a≠0). ②頂點式:f(x)=a(x-m)2+n(a≠0). ③零點式:f(x)=a(x-x1)(x-x2)(a≠0). (2)二次函數(shù)的圖象和性質(zhì) 解析式 f(x)=ax2+bx+c(a>0) f(x)=ax2+bx+c(a<0) 圖象 定義域 (-∞,+∞) (-∞,+∞) 值域 單調(diào)性 在x∈上單調(diào)遞減;在x∈上單調(diào)遞增 在x∈上單調(diào)遞減在x∈上單調(diào)遞增 對稱性 函數(shù)的圖象關(guān)于x=-對稱 2.冪函數(shù) (1)定義:形如y=xα(α∈R)的函數(shù)稱為冪函數(shù),其中x是自變量,α是常數(shù). (2)冪函數(shù)的圖象比較 (3)冪函數(shù)的性質(zhì)比較 特征 函數(shù) 性質(zhì) y=x y=x2 y=x3 y=x y=x-1 定義域 R R R [0,+∞) {x|x∈R且x≠0} 值域 R [0,+∞) R [0,+∞) {y|y∈R且y≠0} 奇偶性 奇函數(shù) 偶函數(shù) 奇函數(shù) 非奇非偶函數(shù) 奇函數(shù) 單調(diào)性 增 x∈[0,+∞)時,增;x∈(-∞,0]時,減 增 增 x∈(0,+∞) 時,減;x∈(-∞,0)時,減 4.名師二級結(jié)論: (1)根式與分數(shù)指數(shù)冪的實質(zhì)是相同的,分數(shù)指數(shù)冪與根式可以相互轉(zhuǎn)化,通常利用分數(shù)指數(shù)冪進行根式的化簡運算. (2)指數(shù)函數(shù)的單調(diào)性是由底數(shù)a的大小決定的,因此解題時通常對底數(shù)a按:0<a<1和a>1進行分類討論. (3)換元時注意換元后“新元”的范圍. (4)對數(shù)源于指數(shù),指數(shù)式和對數(shù)式可以互化,對數(shù)的性質(zhì)和運算法則都可以通過對數(shù)式與指數(shù)式的互化進行證明. (5)解決與對數(shù)有關(guān)的問題時,(1)務必先研究函數(shù)的定義域;(2)注意對數(shù)底數(shù)的取值范圍. (6)對數(shù)值的大小比較方法 化同底后利用函數(shù)的單調(diào)性、作差或作商法、利用中間量(0或1)、化同真數(shù)后利用圖象比較. (7)函數(shù)y=f(x)對稱軸的判斷方法 1、對于二次函數(shù)y=f(x)對定義域內(nèi)所有x,都有f(x1)=f(x2),那么函數(shù)y=f(x)的圖象關(guān)于x=對稱. 2、對于二次函數(shù)y=f(x)對定義域內(nèi)所有x,都有f(a+x)=f(a-x)成立的充要條件是函數(shù)y=f(x)的圖象關(guān)于直線x=a對稱(a為常數(shù)). 5.課本經(jīng)典習題: (1)新課標A版第 70 頁,B組第 2 題 指數(shù)函數(shù)的圖象如圖所示,求二次函數(shù)的頂點的橫坐標的取值范圍. 答案:由圖可知指數(shù)函數(shù)是減函數(shù),所以. 而二次函數(shù)的頂點的橫坐標為, 所以,即二次函數(shù)的頂點的橫坐標的取值范圍是. 【經(jīng)典理由】有效把指數(shù)函數(shù)和二次函數(shù)相結(jié)合 (2)新課標A版第 60 頁,B組第 4 題 設(shè)其中確定為何值時,有: 【解析】(1)3x+1=-2x時,得x=-; (2)時,單調(diào)遞增,由于,得3x+1>-2x得x>-, ,單調(diào)遞減,由于,得3x+1-2x解得x-. 【經(jīng)典理由】根據(jù)a的取值進行分類討論 (3)新課標A版第 72 頁,例8 比較下列各組數(shù)中兩個數(shù)的大?。? (1)log 2 3 . 4 與 log 2 8 . 5; (2)log 0 . 3 1 . 8 與 log 0 . 3 2 . 7; (3)log a 5 . 1 與 log a 5 . 9 (且). 解:(1)∵ y = log 2 x 在 ( 0 , + ∞) 上是增函數(shù)且 3 . 4<8 . 5, ∴ log 2 3 . 4 < log 2 8 . 5 ; (2)∵ y = log 0 . 3 x 在 ( 0 , + ∞)上是減函數(shù)且 1 . 8<2 . 7, ∴l(xiāng)og 0 . 3 1 . 8>log 0 . 3 2 . 7; (3)解:當時,∵ y = log a x在( 0 , + ∞) 上是增函數(shù)且5 . 1<5 . 9, ∴ log a 5 . 1log a 5 . 9, 當0<a<1時,∵ y = log a x在 ( 0 , + ∞) 上是減函數(shù)且5 . 1<5 . 9, ∴ log a 5 . 1>log a 5 . 9 . 【經(jīng)典理由】以對數(shù)函數(shù)為載體,考查對數(shù)運算和對數(shù)函數(shù)的圖象與性質(zhì)的應用 (4)新課標A版第 822 頁,A組第10題 已知冪函數(shù),試求出此函數(shù)的解析式,并作出圖像,判斷奇偶性、單調(diào)性. 【分析】根據(jù)冪函數(shù)的概念設(shè),將點的坐標代入即可求得n值,從而求得函數(shù)解析式.要判斷函數(shù)的奇偶性我們可以根據(jù)函數(shù)奇偶性的定義判斷函數(shù)的奇偶性,判斷函數(shù)圖象在(0,+∞)的單調(diào)性,進而畫出函數(shù)的圖象. 【解析】設(shè),因為冪函數(shù), , 這個函數(shù)解析式為 . 定義域為(0,+∞),它不關(guān)于原點對稱, 所以,y=f(x)是非奇非偶函數(shù). 當x>0時,f(x)是單調(diào)減函數(shù),函數(shù)的圖象如圖. 【經(jīng)典理由】本題通過待定系數(shù)法求冪函數(shù)解析式、解指數(shù)方程的解法、奇(偶)函數(shù)性、冪函數(shù)圖象考查學生對冪函數(shù)有關(guān)知識的掌握程度和對知識的綜合應用能力 6.考點交匯展示: (1)基本初等函數(shù)與集合交匯 例1【河北省“五個一名校聯(lián)盟”xx高三教學質(zhì)量監(jiān)測(一)1】設(shè)集合,,則( ) A.AB B.AB C.AB D.AB 例2【四川省廣安市xx年高2011級第三次診斷考試2】設(shè)集合,,則等于 (A) (B) (C) (D) (2)基本初等函數(shù)與基本不等式交匯 【成都石室中學xx屆高三上期“一診”模擬考試(一)(理)】已知二次函數(shù)的值域為,則的最小值為 . 【考點特訓】 1.【江西師大附中、鷹潭一中xx屆四月高三數(shù)學】函數(shù)的單調(diào)增區(qū)間與值域相同,則實數(shù)的取值為( ) A. B. C. D. 2.【山東省濟寧市xx屆高三上學期期末考試】函數(shù)的圖象過一個定點P,且點P在直線上,則的最小值是( ) A.12 B.13 C.24 D.25 【答案】D 3. 【四川省雅安中學xx屆高三下期3月月考數(shù)學(文)】設(shè),則( ) A.若 B. C. D. 考點:函數(shù)圖象的應用. 4.【唐山市xx學年度高三年級第一次模擬考試】下列函數(shù)是奇函數(shù)的是( ) A. B. C. D. 5.【xx年哈爾濱師大附中 東北師大附中 遼寧省實驗中學高三第一次聯(lián)合模擬考試】已知函數(shù)的零點依次為,則( ) A. B. C. D. 考點:函數(shù)的零點. 6.【xx年哈爾濱師大附中 東北師大附中 遼寧省實驗中學高三第一次聯(lián)合模擬考試】已知函數(shù)的值域是,則實數(shù)的取值范圍是( ) A. B. C. D. 考點:函數(shù)的應用. 7. 【xx安慶二模文】設(shè)定義域為的函數(shù),若函數(shù)有7個零點,則實數(shù)的值為( ) A 0 B 6 C 2或6 D 2 同實根,有3個不同實根,符合題意. 選D。 考點:1函數(shù)圖像;2函數(shù)零點。 8. 【廣州市海珠區(qū)xx學年高三綜合測試(一)試題3】已知,,則( ). A. B. C. D. 9. 【廣東省惠州一中等六校xx屆高三8月聯(lián)考10】定義在R上的奇函數(shù)和定義在上的偶函數(shù)分別滿足,,若存在實數(shù),使得成立,則實數(shù)的取值范圍是( ) A. B. C. D. 10.(xx年高考(北京文))已知,.若 或,則的取值范圍是________. 【答案】 【解析】首先看沒有參數(shù),從入手,顯然時,,時,,而對或成立即可,故只要時,(*)恒成立即可.當時,, 【考點預測】 【熱點1預測】若則的值為 ____ . 【熱點2預測】 如果在區(qū)間上為減函數(shù),則的取值范圍( ) A. B. C. D (0,)- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三數(shù)學 考點總動員06 基本初等函數(shù)指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、二次函數(shù) 文含解析 2019 2020 年高 數(shù)學 考點 總動員 06 基本 初等 函數(shù) 指數(shù)函數(shù) 對數(shù) 二次
鏈接地址:http://m.kudomayuko.com/p-1975696.html