(江蘇專用)2020高考數(shù)學(xué)二輪復(fù)習(xí) 專項強化練(一)矩陣與變換 理 選修4-2

上傳人:水****8 文檔編號:20287183 上傳時間:2021-03-03 格式:DOC 頁數(shù):4 大小:59.50KB
收藏 版權(quán)申訴 舉報 下載
(江蘇專用)2020高考數(shù)學(xué)二輪復(fù)習(xí) 專項強化練(一)矩陣與變換 理 選修4-2_第1頁
第1頁 / 共4頁
(江蘇專用)2020高考數(shù)學(xué)二輪復(fù)習(xí) 專項強化練(一)矩陣與變換 理 選修4-2_第2頁
第2頁 / 共4頁
(江蘇專用)2020高考數(shù)學(xué)二輪復(fù)習(xí) 專項強化練(一)矩陣與變換 理 選修4-2_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

5 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(江蘇專用)2020高考數(shù)學(xué)二輪復(fù)習(xí) 專項強化練(一)矩陣與變換 理 選修4-2》由會員分享,可在線閱讀,更多相關(guān)《(江蘇專用)2020高考數(shù)學(xué)二輪復(fù)習(xí) 專項強化練(一)矩陣與變換 理 選修4-2(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專項強化練(一) 選修4-2:矩陣與變換(理獨) 題型一 常見平面變換 1.已知變換T把平面上的點(3,-4),(5,0)分別變換成(2,-1),(-1,2),試求變換T對應(yīng)的矩陣M. 解:設(shè)M=, 由題意得,=, ∴解得 即M=. 2.(2019高郵中學(xué)模擬)已知點A在變換T:→=作用后,再繞原點逆時針旋轉(zhuǎn)90,得到點B.若點B的坐標為(-4,3),求點A的坐標. 解:設(shè)A(x,y),則A在變換T下的坐標為(x+3y,y),又繞原點逆時針旋轉(zhuǎn)90對應(yīng)的矩陣為, 所以==,得解得 所以點A的坐標為(-9,4). 3.設(shè)矩陣M=(其中a>0,b>0),若曲線C:x2+y2

2、=1在矩陣M所對應(yīng)的變換作用下得到曲線C′:+y2=1,求a+b的值. 解:設(shè)曲線C:x2+y2=1上任意一點P(x,y),在矩陣M所對應(yīng)的變換作用下得到點P1(x1,y1), 則=, 即 又點P1(x1,y1)在曲線C′:+y2=1上,所以+y=1,則+(by)2=1為曲線C的方程. 又曲線C的方程為x2+y2=1,故a2=4,b2=1, 因為a>0,b>0,所以a=2,b=1,所以a+b=3. [臨門一腳] 1.把點A(x,y)繞著坐標原點旋轉(zhuǎn)α角的變換,對應(yīng)的矩陣是,這個矩陣不能遺忘. 2.求點被矩陣變換后的點的坐標或求曲線被矩陣變換后的曲線所用方法是求軌跡中的相關(guān)點法

3、. 3.求直線在矩陣作用下所得直線方程,可以取兩個特殊點求解比較簡便. 題型二 矩陣的復(fù)合、矩陣的乘法及逆矩陣 1.已知a,b是實數(shù),如果矩陣A=所對應(yīng)的變換T把點(2,3)變成點(3,4). (1)求a,b的值; (2)若矩陣A的逆矩陣為B,求B2. 解:(1)由題意,得=, 即解得 (2)由(1),得A=. 由矩陣的逆矩陣公式得B==. 所以B2==. 2.設(shè)二階矩陣A,B滿足A-1=,(BA)-1=,求B-1. 解:設(shè)B-1=,因為(BA)-1=A-1B-1, 所以=,即 解得所以B-1=. [臨門一腳] 1.矩陣的行列式=ad-bc,如果ad-bc≠0,

4、則矩陣存在逆矩陣. 2.矩陣的逆矩陣為. 3.逆矩陣求解可以用定義法求解也可以用公式求解,用公式求解時要寫出原始公式. 4.若二階矩陣A,B均存在逆矩陣,則AB也存在逆矩陣,且(AB)-1=B-1A-1,乘法順序不能顛倒. 題型三 特征值和特征向量 1.已知二階矩陣M有特征值λ=8及對應(yīng)的一個特征向量e1=,并且矩陣M對應(yīng)的變換將點(-1,2)變換成(-2,4). (1)求矩陣M; (2)求矩陣M的另一個特征值. 解:(1)設(shè)M=, 由題意,M==8, M==, ∴解得 即M=. (2)令特征多項式f(λ)==(λ-6)(λ-4)-8=0, 解得λ1=8,λ2=2.

5、矩陣M的另一個特征值為2. 2.已知矩陣A=,A的兩個特征值為λ1=2,λ2=3. (1)求a,b的值; (2)求屬于λ2的一個特征向量α. 解:(1)令f(λ)==(λ-a)(λ-4)+b=λ2-(a+4)λ+4a+b=0, 于是λ1+λ2=a+4,λ1λ2=4a+b.解得a=1,b=2. (2)設(shè)α=,則Aα=== 3=,故解得x=y(tǒng). 所以屬于λ2的一個特征向量為α=. 3.已知矩陣M=,β=,計算M6β. 解:矩陣M的特征多項式為f(λ)==λ2-2λ-3.令f(λ)=0,解得λ1=3,λ2=-1,對應(yīng)的一個特征向量分別為α1=,α2=. 令β=mα1+nα2,得m=4,n=-3. 所以M6β=M6(4α1-3α2)=4(M6α1)-3(M6α2)=436-3(-1)6=. [臨門一腳] 1.A=是一個二階矩陣,則f(λ)==λ2-(a+d)λ+ad-bc稱為A的特征多項式. 2.矩陣M=的特征值λ滿足(λ-a)(λ-d)-bc=0,屬于λ的特征向量α=滿足M=λ. 3.特征值和特征向量,可以用定義求解也可以用公式求解. 4.Mnβ的計算流程要熟悉,這也是求特征值和特征向量的應(yīng)用. 4

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!