低速載貨汽車車架及懸架系統(tǒng)設(shè)計(jì)
低速載貨汽車車架及懸架系統(tǒng)設(shè)計(jì),低速載貨汽車車架及懸架系統(tǒng)設(shè)計(jì),低速,載貨,汽車,車架,懸架,系統(tǒng),設(shè)計(jì)
實(shí)習(xí)心得與體會(huì)
自2007年3月1日進(jìn)入寧波井上華翔汽車零部件有限公司以來,我已經(jīng)歷兩個(gè)月現(xiàn)場實(shí)際工作。在領(lǐng)導(dǎo)及同事們熱情、友善,積極,和諧,兢兢業(yè)業(yè),對(duì)待工作一絲不茍的精神面貌和工作態(tài)度的感染和影響下,我很快融入了這個(gè)特殊的大家庭。 在這個(gè)月里經(jīng)理與同事們給予我很大的幫助。兩個(gè)月以來,經(jīng)理為我精心準(zhǔn)備學(xué)習(xí)計(jì)劃,安排何飛負(fù)責(zé)我在車間的實(shí)習(xí),安排陳云教我APQP文件。同時(shí),我也理論聯(lián)系實(shí)際努力的學(xué)習(xí)。下面,我將結(jié)合兩個(gè)月以來的實(shí)際工作談?wù)勊鶎W(xué)所悟。
在注塑車間實(shí)習(xí),我對(duì)公司的設(shè)備型號(hào),工作原理以及設(shè)備的調(diào)校,產(chǎn)品的主要缺陷,產(chǎn)生缺陷的主要原因與解決方法等有了一定的了解。
公司的主要設(shè)備是用海天的注塑機(jī),根據(jù)鎖模力的大小大致可以分為HT250X1,HT530X1,HT650X2,HT1250X2,HT2800X23種。其工作原理如下:
?注塑機(jī)是一種專用的塑料成型機(jī)械,它利用塑料的熱塑性,經(jīng)加熱融化后,加以高的壓力使其快速流入模腔,經(jīng)一段時(shí)間的保壓和冷卻,成為各種形狀的塑料制品.
注塑機(jī)的工作循環(huán):
1)鎖合模:模扳快速接近定模扳,且確認(rèn)無異物存在下,系統(tǒng)轉(zhuǎn)為高壓,將模板鎖合.
2)射臺(tái)前移到位:射臺(tái)前進(jìn)到指定位置.
3)注塑:可設(shè)定螺桿以多段速度,壓力和行程,將料筒前端的溶料注入模腔。
4)冷卻和保壓:按設(shè)定多種壓力和時(shí)間段,保持料筒的壓力,同時(shí)模腔冷卻成型。
5)冷卻和預(yù)塑:模腔內(nèi)制品繼續(xù)冷卻,同時(shí)液力馬達(dá)驅(qū)動(dòng)螺桿旋轉(zhuǎn)將塑料粒子前推,螺桿在設(shè)定的背壓控制下后退,當(dāng)螺桿后退到預(yù)定位置,螺桿停止旋轉(zhuǎn),注射油缸按設(shè)定松退,預(yù)料結(jié)束。
6)射臺(tái)后退:預(yù)塑結(jié)束后,射臺(tái)后退到指定位置。
7)開模:模扳后退到原位.
8)頂出:頂針頂出制品。
? 注塑成型是一門工程技術(shù),它所涉及的內(nèi)容是將塑料轉(zhuǎn)變?yōu)橛杏貌⒛鼙3衷行阅艿闹破?。注射成型的重要工藝條件是影響塑化流動(dòng)和冷卻的溫度,壓力和相應(yīng)的各個(gè)作用時(shí)間。然而對(duì)設(shè)備的調(diào)校也就是對(duì)注塑溫度與注塑壓力的控制。
一、溫度控制
1、料筒溫度:注射模塑過程需要控制的溫度有料筒溫度,噴嘴溫度和模具溫度等。前兩種溫度主要影響塑料的塑化和流動(dòng),而后一種溫度主要是影響塑料的流動(dòng)和冷卻。每一種塑料都具有不同的流動(dòng)溫度,同一種塑料,由于來源或牌號(hào)不同,其流動(dòng)溫度及分解溫度是有差別的,這是由于平均分子量和分子量分布不同所致,塑料在不同類型的注射機(jī)內(nèi)的塑化過程也是不同的,因而選擇料筒溫度也不相同。
2、噴嘴溫度:噴嘴溫度通常是略低于料筒最高溫度的,這是為了防止熔料在直通式噴嘴可能發(fā)生的"流涎現(xiàn)象"。噴嘴溫度也不能過低,否則將會(huì)造成熔料的早凝而將噴嘴堵死,或者由于早凝料注入模腔而影響制品的性能
3、模具溫度:模具溫度對(duì)制品的內(nèi)在性能和表觀質(zhì)量影響很大。模具溫度的高低決定于塑料結(jié)晶性的有無、制品的尺寸與結(jié)構(gòu)、性能要求,以及其它工藝條件(熔料溫度、注射速度及注射壓力、模塑周期等)。
二、壓力控制: 注塑過程中壓力包括塑化壓力和注射壓力兩種,并直接影響塑料的塑化和制品質(zhì)量。
1、塑化壓力:(背壓)采用螺桿式注射機(jī)時(shí),螺桿頂部熔料在螺桿轉(zhuǎn)動(dòng)后退時(shí)所受到的壓力稱為塑化壓力,亦稱背壓。這種壓力的大小是可以通過液壓系統(tǒng)中的溢流閥來調(diào)整的。在注射中,塑化壓力的大小是隨螺桿的轉(zhuǎn)速都不變,則增加塑化壓力時(shí)即會(huì)提高熔體的溫度,但會(huì)減小塑化的速度。此外,增加塑化壓力常能使熔體的溫度均勻,色料的混合均勻和排出熔體中的氣體。一般操作中,塑化壓力的決定應(yīng)在保證制品質(zhì)量優(yōu)良的前提下越低越好,其具體數(shù)值是隨所用的塑料的品種而異的,但通常很少超過20公斤/平方厘米。
2、注射壓力:在當(dāng)前生產(chǎn)中,幾乎所有的注射機(jī)的注射壓力都是以柱塞或螺桿頂部對(duì)塑料所施的壓力(由油路壓力換算來的)為準(zhǔn)的。注射壓力在注塑成型中所起的作用是,克服塑料從料筒流向型腔的流動(dòng)阻力,給予熔料充模的速率以及對(duì)熔料進(jìn)行壓實(shí)。
其實(shí)產(chǎn)品的缺陷是很多的,關(guān)鍵就是要找出缺陷的主要原因和解決方案。
現(xiàn)在我對(duì)自己所看到的產(chǎn)品的主要缺陷與如何解決這些缺陷說說:
產(chǎn)品名稱
B5GP上海大眾左右門地圖盒
材料
PP
注塑機(jī)型號(hào)
HTF530X/1
主要缺陷
主要原因
解決方法
缺料
注射壓力太低,注射速度慢,料量不足等因素。
注射壓力與速度都調(diào)高(范圍增加10)儲(chǔ)料一般加2。
花斑
原料預(yù)熱不足,背壓太低,原料攪拌不均勻,射速慢,脫模劑使用太多。
原料預(yù)熱處理要到位,調(diào)節(jié)背壓,原料攪拌均勻,加大注射速度,保持模溫,使流體不要提前冷卻,盡量減少脫模劑的使用量。
頂白
射出壓力太大,使產(chǎn)品太飽滿,射出速度太快,托模頂出太快,摩擦力過大。
減小射出壓力與速度,打脫模劑,減小摩擦,產(chǎn)品太飽滿,減少料量(2-5)
產(chǎn)品名稱
后座雜物盒
材料
PP
注塑機(jī)型號(hào)
HTF650X2
主要缺陷
主要原因
解決方法
縮水
保壓不夠,射出壓力不夠,模具溫度過高,射出速度太慢。
增加保壓時(shí)間,調(diào)整射出壓力與速度(調(diào)整5-10),調(diào)節(jié)好冷卻系統(tǒng)。
缺料
注射壓力太低,注射速度慢,料量不足等因素。。
注射壓力與速度都調(diào)高(范圍增加10),儲(chǔ)料一般加2。
白斑
原料預(yù)熱不足,背壓太低,原料攪拌不均勻。
原料預(yù)熱處理要到位,調(diào)節(jié)背壓,原料攪拌均勻。
產(chǎn)品名稱
本體蓋板
材料
PP
注塑機(jī)型號(hào)
HTF530X/1
主要缺陷
主要原因
解決方法
頂白
射出壓力太大,使產(chǎn)品太飽滿,射出速度太快,托模頂出太快,摩擦力過大。
減小射出壓力與速度,打脫模劑,減小摩擦。產(chǎn)品太飽滿可以防止縮水。
雜質(zhì)
模具表面沒清洗干凈,原料與回料的配比不當(dāng)。
要盡量清洗干凈模具表面,原料要根據(jù)產(chǎn)品的性能來配。
產(chǎn)品名稱
SGM18左右前門上飾板骨架
材料
ABS
注塑機(jī)型號(hào)
HTF1250X2
主要缺陷
主要原因
解決方法
缺料
注射壓力太低,注射速度慢,料量不足等因素。
注射壓力與速度都調(diào)高(范圍增加10),儲(chǔ)料一般加2。
變形
由殘余應(yīng)力所照成。
可通過降低注射壓力、提高模具并使模具溫度均勻及提高樹脂溫度或采用退火方法予以消除應(yīng)力。
飛邊
射出壓力太大,模具溫度過高,排氣系統(tǒng)不好。
降低注射壓力,降低模具溫度,延長冷卻時(shí)間,提高鎖模力。
在吹塑車間實(shí)習(xí),我主要對(duì)塑料中空吹塑成型的種類,影響吹塑成型的因素以及主要吹塑產(chǎn)品的缺陷進(jìn)行了了解。
一 塑料中空吹塑成型的種類:
塑料中空吹塑成型可采用擠出吹塑和注射吹塑兩種方法。在成型技術(shù)上兩者的區(qū)別僅在型坯的制造上,其吹塑過程基本相似。兩種方法也各具特色,注射法有利于型坯尺寸和壁厚的準(zhǔn)確控制,所得制品規(guī)格均一、無接縫線痕,底部無飛邊不需要進(jìn)行較多的修飾;擠出法制品形狀的大小不受限制,型坯溫度容易控制,生產(chǎn)效率高,設(shè)備簡單投資少,對(duì)大型容器的制作,可配以貯料器以克服型坯懸掛時(shí)間長的下垂現(xiàn)象?,F(xiàn)在我們公司所采取的方法是擠出法。
二 吹塑產(chǎn)品工藝調(diào)整的目的與影響吹塑成型的因素:
吹塑產(chǎn)品工藝調(diào)整的目的主要是在實(shí)現(xiàn)產(chǎn)品的真正成型后,要求產(chǎn)品各部分滿足產(chǎn)品最小壁厚要求的基礎(chǔ)上,產(chǎn)品壁厚盡可能均勻,產(chǎn)品重量盡可能小(減少材料消耗)。
影響吹塑成型的因素很多,但主要與以下因素有關(guān):
三、吹塑過程的階段以及各階段對(duì)產(chǎn)品壁厚的影響因素:
根據(jù)吹塑的流變學(xué)原理,整個(gè)吹塑過程大致可分為:
(1) 型坯形成階段:聚合物在擠出機(jī)中的輸送、熔融、混煉、泵出成型為型坯的階段;
(2) 型坯下料階段:型坯從模唇與模芯的間隙中擠出下料階段;
(3) 型坯預(yù)吹階段:為避免型坯內(nèi)表面的接觸、粘附,改善制品壁厚的均勻性,對(duì)型坯進(jìn)行預(yù)吹脹階段;
(4) 型坯高壓吹階段:高壓吹脹型坯,使之貼緊模具型腔,實(shí)現(xiàn)產(chǎn)品塑性成型階段。
在型坯形成階段,聚合物的固體流變性能主要決定擠出機(jī)的進(jìn)料特性,熔體流變性能主要決定擠出機(jī)內(nèi)聚合物的熔融、混煉與熔體輸送及模具成型的特性,在這一階段,影響壁厚分布的主要工藝參數(shù)有:(1) 材料:①分子量分布;②平均分子量;(2) 吹塑機(jī):①溫度控制系統(tǒng):(a)料斗溫度;(b)料筒1區(qū)、2區(qū)、3區(qū)、4區(qū)溫度;(c)法蘭溫度;(d)儲(chǔ)料模頭1區(qū)、2區(qū)、3區(qū)、4區(qū)溫度;②螺桿轉(zhuǎn)速。
在型坯下料階段,型坯離模膨脹和型坯垂伸這兩種現(xiàn)象影響型坯成型,在這一階段,影響壁厚分布的主要工藝參數(shù)有:(1)吹塑機(jī):①模頭直徑;②壁厚控制系統(tǒng)(控制模唇與模芯的間隙):(a)軸向壁厚控制系統(tǒng);(b)周向壁厚控制系統(tǒng)。
在型坯預(yù)吹階段,從型坯下方往型坯內(nèi)噴氣,以護(hù)持型坯,減小其垂伸,在這一階段,影響壁厚分布的主要工藝參數(shù)有:(1)預(yù)吹壓力;(2)預(yù)吹時(shí)間。
在型坯高壓吹階段,影響產(chǎn)品塑性成型主要有兩種因素:(1)型坯受高壓吹脹變形;(2)型坯與模腔接觸變形。在這一階段,影響壁厚分布的主要工藝參數(shù)有:(1)材料:材料收縮率;(2)高壓吹:①吹氣壓力;②吹氣時(shí)間;(3)模具:①模具材料;②模具結(jié)構(gòu);③模具排氣系統(tǒng);④模具冷卻系統(tǒng):(a)冷卻水道分布;(b)冷卻水進(jìn)水溫度。
四、主要吹塑產(chǎn)品的缺陷
擾流板
主要工藝步聚:
經(jīng)之前下料的過程打開模具、模具內(nèi)放入金屬嵌件后合上模具 ——模具內(nèi)吹入氣體,型胚在模具內(nèi)定型后停止吹入氣體,產(chǎn)品在模具內(nèi)冷卻、打開模具、取出產(chǎn)品 ——產(chǎn)品去除飛邊后放入定型支架上定型冷卻后放入流轉(zhuǎn)。
主要缺陷:
針孔,黑點(diǎn),壁厚不均(產(chǎn)品質(zhì)量不達(dá)標(biāo)),表面缺料,吹針孔嚴(yán)重縮水,表面波紋等。
其中表面缺料是由于射料的長度不夠,一般只要加長射出長度時(shí)間。
吹針孔嚴(yán)重縮水的原因:(1)、吹針打進(jìn)產(chǎn)品的速度;(2)、吹氣的時(shí)間;(3)、吹針本身的角度。
解決方案:調(diào)節(jié)吹針打進(jìn)速度與吹氣的時(shí)間,修改吹針本身的角度。
表面波紋主要是由于模具影響的。
因此,吹塑產(chǎn)品與注塑產(chǎn)品的主要缺陷產(chǎn)生的原因一樣,主要是機(jī)床,模具與工藝三方面。
以上是我在吹塑車間所學(xué)到的知識(shí),下面我將談?wù)勛⑺苣>叩淖⒁馐马?xiàng)。
在模具師傅的指導(dǎo)下,我了解到模具的注意事項(xiàng)主要是如下幾方面:
一 模具的安裝作業(yè):
1. 注塑機(jī)的大小能力,應(yīng)與產(chǎn)品的大小配套。
1) 平常應(yīng)使用,動(dòng)作穩(wěn)定的注塑機(jī)。
2) 模具安裝面不應(yīng)有灰塵、異物。
3) 模具安裝面不應(yīng)凹凸。
2. 應(yīng)使用指定螺栓直接把模具裝上去,如果不能時(shí)才使用壓板。
3. 使用壓板時(shí)應(yīng)考慮好模具重量與成型狀態(tài)再進(jìn)行安裝。使用螺栓的數(shù)量:1噸以上的模具固定側(cè)、移動(dòng)側(cè)各8個(gè),1噸以下的模具固定側(cè)、移動(dòng)側(cè)各4個(gè)。
4. 推頂器桿應(yīng)使用同一長度,同一直徑的并取好平衡頂出。
5. 確認(rèn)射嘴R
1) 射嘴R應(yīng)小于模具唧嘴接觸部分R。
2) 射嘴的孔徑應(yīng)小于模具的孔徑。
3) 確實(shí)對(duì)好中心。
4) 射嘴接觸部位不應(yīng)有裂紋、傷痕。
6. 注塑機(jī)模具開閉沖程調(diào)整。
7. 確認(rèn)油壓型心拉出器回路的設(shè)定。
8. 用注塑機(jī)緊固模具時(shí),確認(rèn)其平行度低速合模。
一定要取下開關(guān)保險(xiǎn)銷配件。
9. 推桿、推板是否正常動(dòng)作,是否完全反射。
應(yīng)充分注意,并確認(rèn)與推桿,滑板型芯及內(nèi)腔干涉部分。
二、成型作業(yè):
10. 在開始成型作業(yè)時(shí),一定要事先對(duì)模具進(jìn)行加溫。
11. 成型作業(yè)中應(yīng)關(guān)好安全門,安全門處于關(guān)閉狀態(tài)時(shí),不要從安全門的上部、下部把身體伸進(jìn)到里面去。
12. 成型作業(yè)開始時(shí),不要把樹脂一次充填完,應(yīng)從充填不足狀態(tài)開始分3—4次全部充填完。
13. 不要施加不適當(dāng)?shù)暮夏A?。(在所需的最小限度?nèi))。
14. 萬一由于過量填充出現(xiàn)溢料時(shí),要馬上完全清除。
1) 滑板中心、彈簧、螺栓頭部、導(dǎo)套等空隙里流有溢料時(shí),應(yīng)完全清除。
2) 去掉溢料后,確認(rèn)動(dòng)作是否異常。
15. 絕對(duì)不要進(jìn)行二次成形。
16. 對(duì)于模具的開閉動(dòng)作,應(yīng)一直目視到動(dòng)作結(jié)束為上止。
17. 確認(rèn)是否在留有灰塵,毛刺以及筋部殘留樹脂的狀態(tài)下進(jìn)行成形。
1. 確認(rèn)樹脂是否堵塞在模具里。
2. 模具內(nèi)是否有灰塵等。
18. 確認(rèn)模具的滑板型芯是否正常動(dòng)作。
19. 確認(rèn)推桿,傾斜銷有否卡住,有無異常磨耗。
20. 導(dǎo)銷,導(dǎo)套,機(jī)械手,滑板型芯是否斷油。
1. 模具摺動(dòng)面一周應(yīng)涂一次潤滑油。(清除臟油)
2. 確認(rèn)涂在模具摺面上的油,是否粘到產(chǎn)品上。
三、模具的保管:
21. 生產(chǎn)結(jié)束時(shí),休息前停機(jī)時(shí)一定要把模具內(nèi)部的水抽掉,不然會(huì)引起模具內(nèi)部生銹,冷卻效果不良,水路堵塞現(xiàn)象。一定要用壓縮空氣把殘留的水吹出來。
22. 生產(chǎn)結(jié)束時(shí),休息前,停機(jī)時(shí)一定要往模具上涂上清凈的防銹油。
23. 從成形機(jī)取下模具時(shí),一定要裝上模具的開關(guān)保險(xiǎn)銷配件。
以上就是這個(gè)月我在吹塑車間所學(xué)到的知識(shí)。車間實(shí)習(xí)已經(jīng)圓滿結(jié)束,然而我非常感謝領(lǐng)導(dǎo)給我在車間實(shí)習(xí)的機(jī)會(huì),讓我學(xué)到許多在書本上找不到的知識(shí)。同時(shí),感謝領(lǐng)導(dǎo)與同事們對(duì)我兩個(gè)月以來的照顧與無微不至的關(guān)心。
在車間呆了兩個(gè)月,我發(fā)現(xiàn)每個(gè)工藝員在調(diào)工藝時(shí),都是先打出產(chǎn)品,看看產(chǎn)品的缺陷是怎樣的,在依照缺陷調(diào)整相應(yīng)的工藝。因此,正如經(jīng)理與何飛說的,做什么事,學(xué)什么東西都不能只看表面現(xiàn)象,重要的是做的思路與學(xué)的思路。尤其對(duì)于我們新來的項(xiàng)目工程師必須要有目標(biāo),有計(jì)劃,有思路的做好每一個(gè)項(xiàng)目,每一件事,提高自身的能力。
章勇凡
5月1日
附 錄
附錄A
An Analysis of Idling Vibration for a Frame Structured Vehicle
ABSTRACT
A finite element model for an entire frame-structured sports utility vehicle was made to evaluate the characteristics of the idling vibrations for the vehicle. The engine exciting forces were determined by Souma's method to simulate the idling vibrations. The modeling of the power plant and the entire vehicle was verified by the reasonable agreement of the experiment and calculation results. Attention was focused on the frequency of the first-order vertical bending mode for the frame. It has become clear that the idling vibration level of the vehicle is lowered by decreasing the frequency of the first-order frame bending mode.
INTRODUCTION
One of the defects of a diesel vehicle, which has fuel and economical efficiency, is idling vibration for a vehicle body. In a diesel engine, sharp pressure rise caused by the generation of the thermal energy affects the pistons. In the crank system, which converts the linear motion into the rotary motion, two types of reaction forces excite the engine block: the reaction caused by the alternation of the velocity vector in each moving parts, and by the non-uniform rotary motion generated by the finite number of cylinders. The forces transmit to an engine block, an engine foot, a rubber engine mount, a frame, a rubber cab-mount, and then a vehicle body, which make occupants uncomfortable.
The idling vibration for large-sized commercial vehicles was estimated at the early development stage, and the measures against the vibration were taken by simulating the engine exciting forces with Souma‘s method,and entering them to a vehicle model.
In this paper, the idling vibration was determined by entering the engine exciting forces to the vehicle model, which was made of the finite element of the frame and the body for a small-sized recreational vehicle (RV). Also in this paper, how the natural modes for the frame changes in the vehicle condition is analyzed, and it was indicated that the natural frequency of the first-order vertical bending for the frame had a significant effect.
ANALYSIS OF THE VEHICLE BODY VIBRATION
Figure 1 shows the results of analyzing the frequencies of the acceleration in vertical vibration generated on the seat rail while idling in small-sized RV powered by 4-cylinder diesel engine. The main part of the idling vibration is the second-order engine rotation. The 0.5th, 1st, and 1.5th -orders are also critical. However, these orders are caused by the varied combustion between cylinders. A measure against the varied combustion can be expected by improving the injection system. In this research, only 24Hz of the second-order at the idling rotation speed of 720rpm is focused on as a measure in the vehicle structure. Besides, a measure for lowering the vibration is studied because the vertical vibration on seats has a great damaging effect on human sense.
IDENTIFICATION OF THE ENGINE EXCITING FORCE
There are three paths for the engine to excite vibration to a vehicle body: through an engine mount, a driving system, and a tail pipe. In this paper, the path through an engine mount, which has a greatest effect, is studied. The various types of methods to identify the exciting force through an engine mount are known. In this paper, Souma’s method is used.
OUTLINE OF SOUMA’S METHOD
The cause of the exciting force to an engine block in the controversial frequency domain of the idling vibration is considered. First, the combustion pressure that acts on the pistons is considered to cause the vibration. However, assuming that a piston crankshaft does not move with a flywheel and an engine block fixed in some way, the engine components are supposed to be completely rigid in this frequency domain. In this situation, the engine block will not vibrate if the piston crankshaft does not move in spite of the rapid pressure rise in a combustion chamber due to the diesel combustion.
Accordingly, the direct cause of the engine block vibration is not the combustion pressure but the reaction against the piston crankshaft movement. To determine the exciting force to the engine block, the reaction forces against the movement of the mass (mainly in crank system and piston system), which works inside and outside of the engine block, may be calculated.
In Souma’s method, the non-uniform rotary motion in the crank system is found by measuring the pulse generated in a ring gear of the flywheel. Then, the vertical motion in the connected piston system is calculated to determine the exciting force to the engine block using each mass specification value.
VERIFICATION OF THE ACCURACY IN THE EXCITING FORCE
The exciting forces are added at the point corresponding to the crankshaft on the entire vehicle model (described later). The vibration on the head cover and the right engine foot, which the exciting forces mostly affect, is estimated. The results of comparing the calculation with the experiment are shown in Figure 2 and 3. In Figure 2 and 3, 5 types of calculated results are shown considering the idling rotation speed changes.
In Figure 2 and 3, the calculation and the experiment are identified around 24 Hz, 48 Hz, and 72 Hz of 2nd, 4th, and 6th-orders at the speed of 720 rpm. The data of the left engine foot, which is not shown in this paper, is also almost identified. In this frequency domain, as for the vibration, the engine and the vehicle body are insulated by the engine mount. The body hardly affects the engine vibration. As the data of the experiment and the calculation is identified in this domain, the power plant modeling and the exciting force can be considered reasonable.
However, around 12 Hz of 1st-orders, data is not much identified. In this frequency domain, the vibration of the engine and the vehicle body are mutually coupled through the engine mount. Therefore, the accuracy of the vehicle body model has a damaging effect.
IMPROVEMENT OF THE MEASURING ACCURACY IN LOW-FREQUENCY VIBRATION
The engine exciting force was determined using Souma’s method, and the vibration in each part of the engine was calculated by adding the exciting force. So far, however, the calculated data has not been much identified with the actual measurement. Therefore, the accuracy of the actual measurement is improved. In the surface vibration of the engine, the low-frequency vibration, which causes the idling vibration, and the high-frequency vibration, which causes noise, are mixed. When the mixed vibration is measured with a piezo element acceleration pickup, the high-frequency order is emphasized and the target low-frequency order becomes relatively small. For example, the measured acceleration to time waveform for the vertical vibration in the right engine foot is shown in Figure 4.
In this paper, a strain gage acceleration pickup, which measures force acting on the inner weight by strain, is used. This device, which is larger than a piezo element acceleration pickup, is more sensitive to the acceleration. Besides, silicon oil is filled inside to protect the detecting parts in this device, which mechanically blocks off the high-frequency order. The measured acceleration to time waveform for the vertical vibration with the device is shown in Figure 5. Compared with Figure 4, Figure 5 shows only the low-frequency order although the same area was measured. In this way, the high-frequency order is blocked off, which results in the higher sensitivity with the device. This time, the device, which measures the acceleration ranging from 0 to 20m/s2,was used. This device is easily calibrated using G-forces because it has the higher sensitivity. When a piezo element acceleration pickup was used, the differences between the calculation and the experiment were 20-40% in the main order of the vibration, and a few times in other orders. Therefore, the principle of Souma’s method using a piezo element acceleration
pickup has been in doubt. However, the data of the experiment and the calculation has been identified as shown in Figure 2 and 3 since a strain gage acceleration pickup, which has been used in the experiment of movement performance, was used for an engine.
Fig. 1 Seat rail vertical vibration Fig. 2 Head cover lateral vibration
Fig. 3 Right engine foot vertical vibration Fig.4 Measurement with piezo element acceleration pickup
ENTIRE VEHICLE MODEL
Figure 6 shows the body model. Interior and exterior equipments such as doors and seat are added in the form of 85 mass points to the main structure modeling detailed with sheet metal finite elements. The grid points are 61,912. Figure 7 shows the model where a frame, a suspension, and an engine are combined, and a fuel tank and a bumper is added in the form of concentrated mass. The grid points are 39,262.
Combining the models shown in Figure 6 and 7 using cabmount makes the entire vehicle model. Total grid points mounts to 101,174. The calculation time is 3,293 seconds using IBMSP2, MSC/NASTRAN Version 70.5.2. The calculating method is package calculation. If the model becomes on larger scale, the model must be calculated by the block structure.
Figure 8 shows the frequency response function, indicating the responses of the frame with the right back engine mount after exciting the driver’s seat rail. In the frequency ranging from 20 to 30 Hz, which is required for the analysis, the data of the experiment is qualitatively identified with that of the calculation.
Fig. 5 Measurement with strain gage acceleration pickup Fig. 6 Body mode
Fig.7 Frame,power plant and suspension model Fig.8 Frequency response function
CORRELATION ANALYSIS OF THE MODES
From the viewpoint of vibration characteristics, it can be considered that an entire vehicle is insulated by the engine mount and the cabmount, which have relatively small spring constants, although the insulation is not complete. When the entire vehicle is divided into block structures by each insulating mount and suspension, the body has 4 block structures:
(1) Block where interior equipment is added in the form of concentrated mass to the body as shown in Figure 6, which is described as “body”, hereafter.
(2) Block where the fuel tank and the bumper are added in the from of concentrated mass to the frame as shown in Figure 7, which is described as “frame,” hereafter.
(3) Power plant
(4) Suspension
Among the above block structures, (1) body and (2) frame have the natural frequency around 24 Hz in the idling vibration. The vibration characteristics for the body, the frame and the entire vehicle model are compared and investigated.
COMPARISON OF NATURAL FREQUENCY
Figure 9 shows the distribution of the natural vibration frequency in each block structure and in the vehicle condition. The frame has 17 natural modes below 50Hz. In Figure 7, the model mounting a power plant and a suspension on the frame, is called Y chassis, which has 35 natural modes below 50 Hz. Y chassis makes the entire vehicle model by mounting the body, which has 94 natural modes below 50 Hz.
When the number of natural modes of Y chassis is added to 61 natural modes of the body, total number of the modes amounts to 96. The number of the natural modes of the entire vehicle model (94) is less than the above total number by 2 modes. This is because 2 natural modes became above 50 Hz by combining Y chassis and the body, as the result of analyzing the mode correlation described later.
Fig. 9 Natural modes in frequency domain
附錄B
具有車架結(jié)構(gòu)車輛的怠速震動(dòng)分析
摘要
建立全車架結(jié)構(gòu)SUV的有限元模型,用來評(píng)價(jià)車輛的怠速震動(dòng)特性。用Souma理論確定發(fā)動(dòng)機(jī)的動(dòng)力來模擬怠速震動(dòng)。發(fā)動(dòng)機(jī)和整車的模型通過實(shí)驗(yàn)和計(jì)算結(jié)果協(xié)調(diào)以后共同決定。注意力放在了車架一階縱向彎曲模型的頻率上。降低一階車架彎曲模型的頻率可以減少車輛的怠速震動(dòng)已經(jīng)變得明確。
簡介
具有燃油經(jīng)濟(jì)性的柴油車的一個(gè)缺點(diǎn)就是車身的怠速震動(dòng)。在柴油發(fā)動(dòng)機(jī)里,由熱能積聚引起的壓力急劇上升會(huì)影響活塞。在把直線運(yùn)動(dòng)轉(zhuǎn)換成旋轉(zhuǎn)運(yùn)動(dòng)的曲軸系統(tǒng)里,有兩種反作用力使得發(fā)動(dòng)機(jī)體振動(dòng):由移動(dòng)部件運(yùn)動(dòng)換向引起的反作用力,和有限的氣缸不均勻的轉(zhuǎn)動(dòng)引起的。這個(gè)力傳遞到發(fā)動(dòng)機(jī)機(jī)體,發(fā)動(dòng)機(jī)底部,橡膠的發(fā)動(dòng)機(jī)支座,車架,橡膠駕駛室支架,最后到車身,引起乘客不舒服。
大型商用車的怠速震動(dòng)的平復(fù)處于發(fā)展的初期,用Souma理論模擬發(fā)動(dòng)機(jī)震動(dòng),然后建立模型。
這篇論文中,將發(fā)動(dòng)機(jī)置于車中來確定怠速震動(dòng),因?yàn)檐嚰芎蛙嚿淼挠邢拊划?dāng)做一個(gè)小型休閑車。另外,在這篇文章中,也分析了車輛車架自然模式如何改變,并且指出車架一階縱向彎曲的自然頻率具有重要的影響。
車身震動(dòng)的分析
圖A1顯示了四缸柴油機(jī)RV怠速過程中座椅扶手處采集的加速過程中縱向震動(dòng)頻率的分析。怠速震動(dòng)的主要部分是二階發(fā)動(dòng)機(jī)轉(zhuǎn)動(dòng),第0.5,第1,和第1.5階同樣重要。但是,這些不同是由于不同氣缸的燃燒不同而引起的。完善噴射系統(tǒng)可以解決燃燒的差異。在這個(gè)實(shí)驗(yàn)中,只集中研究怠速轉(zhuǎn)速是720rmp時(shí)24Hz車架的二階震動(dòng)。此外,也研究了降低振動(dòng)的措施,因?yàn)樽蔚目v向振動(dòng)對(duì)人類的感覺有很大的破壞性影響。
發(fā)動(dòng)機(jī)引起作用力的判定
發(fā)動(dòng)機(jī)將振動(dòng)傳遞給車身的路線有三種:通過發(fā)動(dòng)機(jī)支座,驅(qū)動(dòng)系統(tǒng),和尾氣排放管。在這篇論文中,研究了起主要作用的發(fā)動(dòng)機(jī)支座的路線。研究方法有很多種,這里用Souma理論。
Souma理論的概要
考慮引起發(fā)動(dòng)機(jī)集體受力的有爭議的怠速振動(dòng)頻率范圍。首先,作用在活塞上的燃燒壓力被認(rèn)為引起這個(gè)振動(dòng)。但是,假設(shè)活塞曲軸并不隨飛輪移動(dòng)并且機(jī)體以某種方式固定,在這個(gè)頻率范圍發(fā)動(dòng)機(jī)的零件被認(rèn)為是完全剛性的。在這種情況下,如果活塞曲軸不移動(dòng),發(fā)動(dòng)機(jī)機(jī)體就不會(huì)振動(dòng),盡管柴油燃燒引起壓力的迅速上升。
相應(yīng)地,引起發(fā)動(dòng)機(jī)機(jī)體振動(dòng)的直接原因不是燃燒壓力,而是活塞曲軸運(yùn)動(dòng)的反作用力。為了確定作用在發(fā)動(dòng)機(jī)機(jī)體上的這個(gè)力,需要計(jì)算在機(jī)體內(nèi)外都發(fā)揮作用的反作用力。
在Souma理論里,通過測量在飛輪齒圈上收集到的脈沖來發(fā)現(xiàn)曲軸系統(tǒng)的不協(xié)調(diào)旋轉(zhuǎn)運(yùn)動(dòng)。然后計(jì)算相連的活塞系統(tǒng)的縱向運(yùn)動(dòng)來確定發(fā)動(dòng)機(jī)機(jī)體上的作用力。
作用力準(zhǔn)確性的驗(yàn)證
在整車模型里(后續(xù)描述),振動(dòng)力的增加和曲軸是對(duì)應(yīng)的。評(píng)估振動(dòng)主要影響的引擎蓋和發(fā)動(dòng)機(jī)右側(cè)底部。計(jì)算數(shù)據(jù)和實(shí)驗(yàn)結(jié)果的比較結(jié)論在圖A2和圖A3中表示了出來。在圖A2和圖A3中,表示出來5種不同的計(jì)算結(jié)果,因?yàn)橐紤]怠速轉(zhuǎn)速的變化。
在圖A2和圖A3中,鑒定了在轉(zhuǎn)速為720rpm時(shí)第二第四和第六階的24Hz,48Hz和72Hz的計(jì)算數(shù)據(jù)和實(shí)驗(yàn)結(jié)果。發(fā)動(dòng)機(jī)左側(cè)底部的數(shù)據(jù),在這篇論文中沒有顯示出來,但是也幾乎全部鑒定了出來。至于在這個(gè)頻率范圍內(nèi),發(fā)動(dòng)機(jī)和車身的振動(dòng)被發(fā)動(dòng)機(jī)支座隔離開來。車身幾乎影響不到發(fā)動(dòng)機(jī)的振動(dòng)。因?yàn)閷?shí)驗(yàn)數(shù)據(jù)和計(jì)算結(jié)果的鑒定是在這一范圍內(nèi),動(dòng)力模型和振動(dòng)力可以認(rèn)為是合理的。
但是在一階12Hz周圍,數(shù)據(jù)并沒有鑒定出來。在這一頻率范圍內(nèi),發(fā)動(dòng)機(jī)和車身的振動(dòng)被發(fā)動(dòng)機(jī)支座耦合到了一起,因此,車身模型的準(zhǔn)確定受到影響。
低頻振動(dòng)測量方式的改善
發(fā)動(dòng)機(jī)振動(dòng)力通過Souma理論來確定,通過增加振動(dòng)力,發(fā)動(dòng)機(jī)每個(gè)部分的震動(dòng)都被計(jì)算出來。至此,然而,計(jì)算數(shù)據(jù)并沒有和實(shí)際測量完全區(qū)分開來。因此,實(shí)際測量的準(zhǔn)確性得到提高。引起怠速振動(dòng)的低頻振動(dòng)和引起噪聲的高頻振動(dòng)在發(fā)動(dòng)機(jī)表面混合到一起。當(dāng)通過壓力測量這個(gè)混合振動(dòng),高頻率的振動(dòng)被加重,而作為研究目標(biāo)的低頻率表振動(dòng)則變得相對(duì)小了。舉個(gè)例子,測量發(fā)動(dòng)機(jī)右側(cè)底部的縱向振動(dòng)加速-時(shí)間波形如圖A4所示。
在這篇論文中,運(yùn)用了測量壓力作用在內(nèi)部的重量的加速壓力計(jì)。這個(gè)裝置比壓力元素加速機(jī)更大,對(duì)加速也更敏感。除此之外,內(nèi)部為了保護(hù)探測部分而填充的硅油阻止了高頻振動(dòng)。這個(gè)裝置測得的加速-時(shí)間縱向振動(dòng)波形如圖A5所示。和圖A4相比,圖A5僅僅顯示出了低頻率,雖然測量的是相同的區(qū)域。通過這種方式,高頻率振動(dòng)被阻截掉,因此明暗度更高。這一次,使用了加速度測量范圍0到20m/s2的裝置。因?yàn)殪`敏度高,這個(gè)裝置很容易校準(zhǔn),通過重力加速度。使用壓力加速度檢測計(jì)的時(shí)候,主階振動(dòng)計(jì)算數(shù)據(jù)和實(shí)驗(yàn)結(jié)果的差異是20-40%。因此,采用這一方式的Souma理論處于質(zhì)疑中。然而,圖A2和A3是采用流量計(jì)加速度檢測計(jì)鑒定出來的計(jì)算結(jié)果。
圖B1 座椅扶手縱向振動(dòng) 圖B2 缸蓋橫向振動(dòng)
圖B3 右側(cè)發(fā)動(dòng)機(jī)底部縱向振動(dòng) 圖B4 壓力加速度計(jì)測量結(jié)果
整車模型
圖A6是整車模型。像車門和座椅等內(nèi)部和外部裝置以85點(diǎn)增加到詳細(xì)有限元結(jié)構(gòu)模型中。網(wǎng)格數(shù)是61,912。圖A7是一個(gè)有懸架,發(fā)動(dòng)機(jī),燃料箱和保險(xiǎn)杠的車架組合成一個(gè)整體,網(wǎng)格數(shù)是39,262。
把圖A6和圖A7組個(gè)到一起形成了一個(gè)整車模型,總的網(wǎng)格數(shù)是101,174。使用70.5.2版本的IBMSP2, MSC/NASTRAN計(jì)算時(shí)間是3,293。計(jì)算方法是打包計(jì)算。如果模型是更大規(guī)模,則必須通過整體結(jié)構(gòu)計(jì)算。
圖A8是頻率響應(yīng)函數(shù),指示出振動(dòng)力作用在發(fā)動(dòng)機(jī)支座時(shí)車架的響應(yīng)。在需要分析的20到30Hz頻率范圍里,實(shí)驗(yàn)數(shù)據(jù)相對(duì)于計(jì)算結(jié)果更好。
圖B5 流量計(jì)加速度檢測機(jī)的測量結(jié)果 圖B6 車身
圖B7 車架,發(fā)動(dòng)機(jī)和懸架模型 圖B8 頻率響應(yīng)函數(shù)
圖B9 自然模式的頻率范圍
模型相關(guān)性分析
從振動(dòng)特性的角度來看,可以認(rèn)為整車振動(dòng)被發(fā)動(dòng)機(jī)支座和駕駛室支座隔離開來,因?yàn)橛袕椈蛇B接,雖然隔離并不徹底。如果整車被連接件和懸掛分開,車身有4大結(jié)構(gòu):
(1)機(jī)體 增加了內(nèi)部零件,如圖A6所示,此后描述成機(jī)體。
(2)車架 車架上增加了燃料箱和保險(xiǎn)杠,如圖A7所示,此后描述成車架
(3)動(dòng)力系統(tǒng)
(4)懸架
在以上的結(jié)構(gòu)中,(1)機(jī)體和(2)車架怠速振動(dòng)的自然頻率在24Hz附近。機(jī)體,車架和整車模型的振動(dòng)特性被比較和研究。
自然頻率的比較
圖A9顯示的是每個(gè)結(jié)構(gòu)和車輛不同狀態(tài)下自然振動(dòng)頻率的分布情況。車架有17個(gè)自然模式低于50Hz。在圖7中,裝有發(fā)動(dòng)機(jī)和懸架的車架,Y型底盤,有35個(gè)自然模式低于50Hz。Y型底盤加裝一個(gè)車身就形成了整車模型,具有94個(gè)自然模式低于50Hz。
當(dāng)Y型底盤的自然模式數(shù)量增加到61個(gè),總數(shù)達(dá)到96個(gè)。整車模型的自然模式數(shù)量比這個(gè)總數(shù)少2個(gè),因?yàn)橛袃蓚€(gè)因?yàn)榻Y(jié)合了Y型底盤而高于了50Hz,相互關(guān)聯(lián)的分析結(jié)果將在以后描述。
收藏