《第二章整式的加減》提優(yōu)特訓(xùn)(pdf版7份)含答案.rar
《第二章整式的加減》提優(yōu)特訓(xùn)(pdf版7份)含答案.rar,第二章整式的加減,第二,整式,加減,提優(yōu)特訓(xùn),pdf,答案
3 4 人 的 愿 望 沒 有 止 境, 人 的 力 量 用 之 不 盡。 — — — 高 爾 基 第 二 章 整 式 的 加 減 2 . 1 整 式 第 1 課 時 1 . 掌 握 單 項 式、 多 項 式、 整 式 的 概 念, 會 用 整 式 表 示 簡 單 的 數(shù) 量 關(guān) 系 . 2 . 掌 握 整 式、 單 項 式 及 其 系 數(shù) 與 次 數(shù)、 多 項 式 的 次 數(shù)、 項 的 概 念, 明 確 它 們 之 間 的 區(qū) 別 和 聯(lián) 系, 能 夠 識 別 單 項 式、 多 項 式 及 整 式, 并 正 確 說 出 單 項 式 的 系 數(shù) 及 次 數(shù)、 多 項 式 的 項 數(shù) 和 次 數(shù) . 1 . 下 列 代 數(shù) 式: 2 x y 2 , - 1 2 a b , 1 4 , 2 b+1 , m , a+ b 4 , a π 中, 單 項 式 有( ) . A.4 個 B.5 個 C.6 個 D.7 個 2 . 關(guān) 于 單 項 式 -3 3 x 3 y 2 z , 下 列 結(jié) 論 中 正 確 的 是( ) . A. 系 數(shù) 是 -3 3 , 次 數(shù) 是 8 B. 系 數(shù) 是 -3 , 次 數(shù) 是 9 C. 系 數(shù) 是 -3 , 次 數(shù) 是 6 D. 系 數(shù) 是 -3 3 , 次 數(shù) 是 6 3 . 下 列 代 數(shù) 式 中, 符 合 書 寫 格 式 的 是( ) . A. 2 a b B.-1× k C.2 x÷ y D. a×10% 4 . 下 列 語 句 中 錯 誤 的 是( ) . A. 數(shù) 字 0 也 是 單 項 式 B. 單 項 式 - a 的 系 數(shù) 與 次 數(shù) 都 是 1 C. 1 2 x y 是 二 次 單 項 式 D.- 2 a b 3 的 系 數(shù) 是 - 2 3 5 . 設(shè) 乙 數(shù) 為 x , 甲 數(shù) 比 乙 數(shù) 小 60% , 用 代 數(shù) 式 表 示 甲 數(shù) 為 ( ) . A. x-60% B.60% x C. x-60% x D.1-60% 6 . 如 果( m-2 ) x y n+1 是 關(guān) 于 x , y 的 一 個 五 次 單 項 式, 那 么 m , n 應(yīng) 滿 足 的 條 件 為 . 7 . 請 你 寫 出 一 個 單 項 式, 使 它 的 系 數(shù) 為 -1 , 次 數(shù) 為 3 . 答: . 8 . 若 長 方 形 的 長 為 m , 寬 為 n , 則 長 方 形 的 面 積 為 . 9 . 觀 察 單 項 式: - x , 2 x 2 , -3 x 3 , 4 x 4 ,…, -19 x 19 , 20 x 20 ,…, 則 第 2012 個 單 項 式 為 . 1 0 . 某 市 出 租 車 的 收 費 標 準 為: 3km 以 內(nèi) 為 起 步 價 10 元, 3km 后 每 千 米 收 費 1 . 8 元, 某 人 乘 坐 出 租 車 xkm ( x 3 ), 則 應(yīng) 付 費 元 . 1 1 . 隨 著 計 算 機 技 術(shù) 的 迅 猛 發(fā) 展, 電 腦 價 格 不 斷 降 低, 某 品 牌 的 電 腦 按 原 價 降 低 m 元 后, 又 降 價 25% , 現(xiàn) 售 價 為 n 元, 那 么 該 電 腦 的 原 售 價 為 . 1 2 . 如 圖, 某 長 方 形 廣 場 的 四 角 都 有 一 塊 半 徑 相 同 的 四 分 之 一 圓 形 的 草 地, 若 圓 的 半 徑 為 rm , 長 方 形 的 長 為 am , 寬 為 bm . 請 用 整 式 表 示 空 地 的 面 積 為 m 2 . ( 第12 題) ( 第13 題) 1 3 . 圖 中 陰 影 部 分 的 面 積 為 . 1 4 . 在 整 式: 3 x-2 y , -8 b 9 , b-3 y 36 , 0 . 2 , 5 m n- n-7 , 6+ a 2 - b 中, 有 個 單 項 式, 個 多 項 式, 多 項 式 分 別 是 . 1 5 . 判 斷 下 列 各 式 是 否 是 單 項 式, 如 果 不 是, 請 簡 單 說 明 理 由; 如 果 是, 請 指 出 它 的 系 數(shù) 和 次 數(shù) . ( 1 ) x+ 1 2 ; ( 2 ) 1 x ; ( 3 ) π r 2 ; ( 4 ) - 3 2 a 2 b . 1 6 . 指 出 下 列 多 項 式 的 項 和 次 數(shù) . ( 1 ) a 3 - a 2 b+ a b- b 3 ; ( 2 ) 3 n 4 -2 n 2 +1 . 1 7 . 列 式 表 示: ( 1 ) 三 個 連 續(xù) 整 數(shù) 的 中 間 一 個 是 n , 用 代 數(shù) 式 表 示 它 們 三 個 數(shù) 的 和 為 ; ( 2 ) 三 個 連 續(xù) 奇 數(shù) 的 中 間 一 個 是 n , 其 他 兩 個 數(shù) 用 代 數(shù) 式 表 示 為 ;第 二 章 整 式 的 加 減 只 有 善 于 創(chuàng) 新 的 人, 才 能 享 受 幸 福。 — — — 茨 威 格 3 5 ( 3 ) 設(shè) n 表 示 任 意 一 個 整 數(shù), 試 用 含 n 的 式 子 表 示 不 能 被 3 整 除 的 數(shù) 為 . 1 8 . 學(xué) 校 閱 覽 室 有 能 坐 4 人 的 方 桌, 如 果 多 于 4 人, 就 把 方 桌 拼 成 一 行, 2 張 方 桌 拼 成 一 行 能 坐 6 人( 如 圖 所 示) . ( 第18 題) 按 照 這 種 規(guī) 律 填 寫 下 表 的 空 格: 拼 成 一 行 的 桌 子 數(shù) 1 2 3 … n 人 數(shù) 4 6 … 1 9 . 已 知 多 項 式 3 x m + ( n-5 ) x-2 是 關(guān) 于 x 的 二 次 三 項 式, 則 m , n 應(yīng) 滿 足 的 條 件 是 . 2 0 . 當(dāng) k= 時, 多 項 式 x 2 -2 k x y-3 y 2 - x y-5 中 不 含 x y 項 . 2 1 . 某 電 影 院 共 有 座 位 n 排, 已 知 第 一 排 的 座 位 有 m 個, 后 一 排 總 是 比 前 一 排 多 1 個 座 位, 則 電 影 院 中 共 有 座 位 個 數(shù) 為( ) . A. m n+ n 2 2 B. m n+ n ( n-1 ) 2 C. m n+ n D. m n+ n ( n+1 ) 2 2 2 . 若 單 項 式 - 3 4 x m y n+1 的 次 數(shù) 是 5 , 且 m 為 質(zhì) 數(shù), n 為 正 整 數(shù), 求 m 的 值 . 2 3 . 已 知 -6 x m y 為 四 次 單 項 式, x 2 n y-3 x n y+1 為 五 次 多 項 式, 求 m n 的 值 . 2 4 . 已 知( a-3 ) x 2 y | a| + ( b+2 ) 是 關(guān) 于 x y 的 5 次 單 項 式, 求 a 2 -3 a b+ b 2 的 值 . 2 5 . 請 寫 出 所 有 含 字 母 a , b , 且 次 數(shù) 為 4 , 系 數(shù) 為 2 的 單 項 式: . 2 6 . 有 一 串 單 項 式 - a , 2 a 2 , -3 a 3 ,…, -19 a 19 , 20 a 20 ,… ( 1 ) 觀 察 這 些 單 項 式 的 特 點, 請 說 出 它 們 的 規(guī) 律 是 什 么? ( 2 ) 寫 出 第 100 個 與 第 2011 個 單 項 式; ( 3 ) 寫 出 第 n 個 與 第( n+1 ) 個 單 項 式 . 2 7 . ( 2 0 1 1 · 廣 西 柳 州) 單 項 式 3 x 2 y 3 的 系 數(shù) 為 . 2 8 . ( 2 0 1 0 · 廣 東 肇 慶) 觀 察 下 列 單 項 式: a , -2 a 2 , 4 a 3 , -8 a 4 , 16 a 5 ,…, 按 此 規(guī) 律 第 n 個 單 項 式 是 . ( n 是 正 整 數(shù)) 2 9 . ( 2 0 1 0 · 貴 州 畢 節(jié)) 寫 出 含 有 字 母 x , y 的 五 次 單 項 式 . ( 只 要 求 寫 出 一 個) 3 0 . ( 2 0 1 0 · 湖 北 隨 州) 通 信 市 場 競 爭 日 益 激 烈, 某 通 信 公 司 的 手 機 市 話 費 標 準 按 原 標 準 每 分 鐘 降 低 a 元 后, 再 次 下 調(diào) 了 20% , 現(xiàn) 在 收 費 標 準 是 每 分 鐘 b 元, 則 原 收 費 標 準 每 分 鐘 是 元 .1 0 19.A 20.A 21.C 22.A 23 . ( 1 ) -26 ( 2 ) 3 ( 3 ) 0 ( 4 ) -1 1 6 24 .-2 25 . ( 1 ) 1 2 1 2001 - 1 ( ) 2003 ( 2 ) 1001 2003 26 . ( 1 ) 對 加、 減、 乘 具 有 封 閉 性, 對 除 法 不 具 有 封 閉 性 . ( 2 ) 2 . 27 . 假 設(shè) 能 夠 填 出 這 樣 的 表, 那 么 五 行、 五 列、 兩 對 角 線 上 的 數(shù) 字 之 和 共 有12 個 不 同 的 整 數(shù) . 但5 個 取 自-1 , 0 , 1 的 數(shù) 字 和 共 有 -5 , -4 ,…, 0 ,…, 4 , 5 共11 個 數(shù), 所 以 滿 足 條 件 的 方 格 表 不 存 在 . 第 二 章 整 式 的 加 減 2 . 1 整 式 第 1 課 時 1.B 2.D 3.A 4.B 5.C 6 . m≠2 , n=3 7 . 答 案 不 唯 一 8 . m n 9 .2012 x 2012 10 .1 . 8 x+4 . 6 11 . 4 3 n+ m 12 . a b-π r 2 13 . 1 4 π R 2 14 .2 4 3 x-2 y , b-3 y 3 6 , 5 m n- n-7 , 6+ a 2 - b 15 . ( 1 ) 不 是, 理 由 略 ( 2 ) 不 是, 理 由 略 ( 3 ) 是, 系 數(shù) 是π , 次 數(shù) 是2 ( 4 ) 是, 系 數(shù) 是- 3 2 , 次 數(shù) 是3 16 . ( 1 ) 次 數(shù) 是3 , 項: a 3 , - a 2 b , a b , - b 3 ( 2 ) 次 數(shù) 是4 , 項: 3 n 4 , -2 n 2 , +1 17 . ( 1 )( n-1 ) + n+ ( n+1 ) 或3 n ( 2 ) n-2 和 n+2 ( 3 ) 3 n+1 和3 n+2 18 .8 2 n+2 19 . m=2 , n≠5 20 .- 1 2 21 .B 22 .∵ 單 項 式- 3 4 x m y n+1 的 次 數(shù) 是5 , ∴ m+ n+1=5 . ∴ m+ n=4 . ∵ m 為 質(zhì) 數(shù), ∴ m=2 或 m=3 . ∴ m=2 , n=2 或 m=3 , n=1 . 23 . m=3 , n=2 , m n =9 24 .-5 25 .2 a b 3 , 2 a 2 b 2 , 2 a 3 b 26 . ( 1 ) 奇 數(shù) 項 的 系 數(shù) 為 負, 偶 數(shù) 項 的 系 數(shù) 為 正, 系 數(shù) 的 絕 對 值 等 于 項 數(shù), 字 母 部 分 是 a 的 冪, 其 次 數(shù) 等 于 項 數(shù) . ( 2 ) 第100 個 是100 a 100 , 第2011 個 是 -2011 a 2011 . ( 3 ) 第 n 個 是( -1 ) n · n · a n , 第( n+1 ) 個 是( -1 ) n+1 ·( n+1 )· a n+1 . 27 .3 28 . ( -2 ) n-1 a n 29 . 答 案 不 唯 一, 例 如 x 2 y 3 . 30 . ( a+1 . 25 b ) 第 2 課 時 1.D 2.A 3.D 4.C 5.C 6.A 7 . ( 6 n+2 ) 8 .10 26 9 . ( 1 ) 次 數(shù) 為3 , 項 為3 a 2 , 5 , -3 a , a 3 , 升 冪 排 列 為: 5-3 a+3 a 2 + a 3 ; ( 2 ) 次 數(shù) 為4 , 項 為2 a 3 b , -4 b 3 , 5 a 2 , 升 冪 排 列 為: -4 b 3 +5 a 2 +2 a 3 b . 10 . ( a-4 ) x 4 - x b + x- b 是 關(guān) 于 x 的 二 次 三 項 式, ∴ ( a-4 ) =0 , b=2 , 即 a=4 , b=2 , ∴ a+ b=6 . 11 . k=0 , 二 次 三 項 式 . 12 . ( 1 ) A B=5 x- x- x=3 x . ( 2 ) 3 y×2+2 y×2+5 x×2=10 x+10 y . ( 3 ) 5 x×3 y-2 y× x=13 x y . ( 4 ) 當(dāng) x=0 . 5 , y=0 . 8 時, 周 長 為13 , 面 積 為5 . 2 . 13 . ( 1 ) 乘 車 m 次 時 的 余 額 為( 50-0 . 8 m ) 元 . ( 2 ) 乘 車13 次 時 的 余 額 是50-13×0 . 8= 39 . 6 ( 元) . ( 3 ) 根 據(jù) 題 意, 得50-0 . 8 m≥0 , 解 得 m≤ 62 . 5 , 所 以 最 多 能 乘62 次 車 . 14 . 設(shè)17 個 連 續(xù) 整 數(shù) 為 m , m+1 , m+2 ,…, m+16 ; 緊 接 著 的17 個 連 續(xù) 整 數(shù) 為 m+17 , m+18 ,…, m+33 ; ∵ 后 面 的 每 一 項 比 前 面 的 每 一 項 大17 , ∴ 后 面17 項 的 和 為306+17×17=595 . 15 . ( 1 ) 兩 個 式 子 的 值 都 隨 x 的 增 大 而 增 大; ( 2 ) 6 x-5 的 值 先 超 過100 ; 當(dāng) x=18 時, 6 x-5=103 , 而4 x+5=77 , 即 當(dāng) x=18 時, 6 x-5 的 值 開 始 超 過100 . 16 . ( 1 ) 按 照 編 碼 的 方 法, 15 能 被5 整 除, 即 余 數(shù) 為0 ; 15 除 以7 的 余 數(shù) 為1 , 所 以 原 來 房 間 號 碼 為15 的 鑰 匙 上 刻 的 數(shù) 應(yīng) 該 是01 . ( 2 ) 鑰 匙 上 刻 的 數(shù) 是15 , 左 邊 的 數(shù) 字 是1 ,1 0 19.A 20.A 21.C 22.A 23 . ( 1 ) -26 ( 2 ) 3 ( 3 ) 0 ( 4 ) -1 1 6 24 .-2 25 . ( 1 ) 1 2 1 2001 - 1 ( ) 2003 ( 2 ) 1001 2003 26 . ( 1 ) 對 加、 減、 乘 具 有 封 閉 性, 對 除 法 不 具 有 封 閉 性 . ( 2 ) 2 . 27 . 假 設(shè) 能 夠 填 出 這 樣 的 表, 那 么 五 行、 五 列、 兩 對 角 線 上 的 數(shù) 字 之 和 共 有12 個 不 同 的 整 數(shù) . 但5 個 取 自-1 , 0 , 1 的 數(shù) 字 和 共 有 -5 , -4 ,…, 0 ,…, 4 , 5 共11 個 數(shù), 所 以 滿 足 條 件 的 方 格 表 不 存 在 . 第 二 章 整 式 的 加 減 2 . 1 整 式 第 1 課 時 1.B 2.D 3.A 4.B 5.C 6 . m≠2 , n=3 7 . 答 案 不 唯 一 8 . m n 9 .2012 x 2012 10 .1 . 8 x+4 . 6 11 . 4 3 n+ m 12 . a b-π r 2 13 . 1 4 π R 2 14 .2 4 3 x-2 y , b-3 y 3 6 , 5 m n- n-7 , 6+ a 2 - b 15 . ( 1 ) 不 是, 理 由 略 ( 2 ) 不 是, 理 由 略 ( 3 ) 是, 系 數(shù) 是π , 次 數(shù) 是2 ( 4 ) 是, 系 數(shù) 是- 3 2 , 次 數(shù) 是3 16 . ( 1 ) 次 數(shù) 是3 , 項: a 3 , - a 2 b , a b , - b 3 ( 2 ) 次 數(shù) 是4 , 項: 3 n 4 , -2 n 2 , +1 17 . ( 1 )( n-1 ) + n+ ( n+1 ) 或3 n ( 2 ) n-2 和 n+2 ( 3 ) 3 n+1 和3 n+2 18 .8 2 n+2 19 . m=2 , n≠5 20 .- 1 2 21 .B 22 .∵ 單 項 式- 3 4 x m y n+1 的 次 數(shù) 是5 , ∴ m+ n+1=5 . ∴ m+ n=4 . ∵ m 為 質(zhì) 數(shù), ∴ m=2 或 m=3 . ∴ m=2 , n=2 或 m=3 , n=1 . 23 . m=3 , n=2 , m n =9 24 .-5 25 .2 a b 3 , 2 a 2 b 2 , 2 a 3 b 26 . ( 1 ) 奇 數(shù) 項 的 系 數(shù) 為 負, 偶 數(shù) 項 的 系 數(shù) 為 正, 系 數(shù) 的 絕 對 值 等 于 項 數(shù), 字 母 部 分 是 a 的 冪, 其 次 數(shù) 等 于 項 數(shù) . ( 2 ) 第100 個 是100 a 100 , 第2011 個 是 -2011 a 2011 . ( 3 ) 第 n 個 是( -1 ) n · n · a n , 第( n+1 ) 個 是( -1 ) n+1 ·( n+1 )· a n+1 . 27 .3 28 . ( -2 ) n-1 a n 29 . 答 案 不 唯 一, 例 如 x 2 y 3 . 30 . ( a+1 . 25 b ) 第 2 課 時 1.D 2.A 3.D 4.C 5.C 6.A 7 . ( 6 n+2 ) 8 .10 26 9 . ( 1 ) 次 數(shù) 為3 , 項 為3 a 2 , 5 , -3 a , a 3 , 升 冪 排 列 為: 5-3 a+3 a 2 + a 3 ; ( 2 ) 次 數(shù) 為4 , 項 為2 a 3 b , -4 b 3 , 5 a 2 , 升 冪 排 列 為: -4 b 3 +5 a 2 +2 a 3 b . 10 . ( a-4 ) x 4 - x b + x- b 是 關(guān) 于 x 的 二 次 三 項 式, ∴ ( a-4 ) =0 , b=2 , 即 a=4 , b=2 , ∴ a+ b=6 . 11 . k=0 , 二 次 三 項 式 . 12 . ( 1 ) A B=5 x- x- x=3 x . ( 2 ) 3 y×2+2 y×2+5 x×2=10 x+10 y . ( 3 ) 5 x×3 y-2 y× x=13 x y . ( 4 ) 當(dāng) x=0 . 5 , y=0 . 8 時, 周 長 為13 , 面 積 為5 . 2 . 13 . ( 1 ) 乘 車 m 次 時 的 余 額 為( 50-0 . 8 m ) 元 . ( 2 ) 乘 車13 次 時 的 余 額 是50-13×0 . 8= 39 . 6 ( 元) . ( 3 ) 根 據(jù) 題 意, 得50-0 . 8 m≥0 , 解 得 m≤ 62 . 5 , 所 以 最 多 能 乘62 次 車 . 14 . 設(shè)17 個 連 續(xù) 整 數(shù) 為 m , m+1 , m+2 ,…, m+16 ; 緊 接 著 的17 個 連 續(xù) 整 數(shù) 為 m+17 , m+18 ,…, m+33 ; ∵ 后 面 的 每 一 項 比 前 面 的 每 一 項 大17 , ∴ 后 面17 項 的 和 為306+17×17=595 . 15 . ( 1 ) 兩 個 式 子 的 值 都 隨 x 的 增 大 而 增 大; ( 2 ) 6 x-5 的 值 先 超 過100 ; 當(dāng) x=18 時, 6 x-5=103 , 而4 x+5=77 , 即 當(dāng) x=18 時, 6 x-5 的 值 開 始 超 過100 . 16 . ( 1 ) 按 照 編 碼 的 方 法, 15 能 被5 整 除, 即 余 數(shù) 為0 ; 15 除 以7 的 余 數(shù) 為1 , 所 以 原 來 房 間 號 碼 為15 的 鑰 匙 上 刻 的 數(shù) 應(yīng) 該 是01 . ( 2 ) 鑰 匙 上 刻 的 數(shù) 是15 , 左 邊 的 數(shù) 字 是1 ,3 6 樂 天 知 命, 乃 是 人 生 的 一 種 需 要。 — — — 顯 克 微 支 第 2 課 時 1 . 理 解 整 式 的 值 的 概 念, 會 求 整 式 的 值 . 2 . 會 用 整 式 解 決 簡 單 的 實 際 問 題 . 3 . 會 把 一 個 多 項 式 按 某 個 字 母 的 升 冪 或 降 冪 排 列 . 1 . 如 果 n 表 示 一 個 任 意 整 數(shù), 那 么 表 示 奇 數(shù) 的 式 子 是 ( ) . A. n+2 B. n+1 C.2 n D.2 n+1 2 . 已 知 2 a+3 b=4 , 則 6 a+9 b+5 的 值 是( ) . A.17 B.18 C.19 D.20 3 . 己 知 m , n 都 是 正 整 數(shù), 則 多 項 式 -2 x n +3 x m +4 x m+ n 的 次 數(shù) 是( ) . A. m B. n C. m , n 中 較 大 的 D. m+ n 4 . 下 列 代 數(shù) 式 中, 不 是 整 式 的 是( ) . A. 1 2 B. x y C. 1 a D. x+ y 5 . 一 個 n 次 多 項 式, 它 的 每 一 項 的 次 數(shù)( ) . A. 都 等 于 n B. 都 小 于 n C. 都 不 大 于 n D. 都 不 小 于 n 6 . 用 棋 子 擺 出 下 列 一 組“ 口” 字, 按 照 這 種 方 法 擺 下 去, 則 擺 第 n 個“ 口” 字 需 用 棋 子( ) . ( 第6 題) A.4 n 枚 B. ( 4 n-4 ) 枚 C. ( 4 n+4 ) 枚 D. n 2 枚 7 . 用 火 柴 棒 按 以 下 方 式 搭 小 魚, 搭 1 條 小 魚 用 8 根 火 柴 棒, 搭 2 條 小 魚 用 14 根,…, 則 搭 n 條 小 魚 需 要 根 火 柴 棒 . ( 用 含 n 的 代 數(shù) 式 表 示) ( 第7 題) 8 . 用“ ? ” 定 義 新 運 算: 對 于 任 意 實 數(shù) a , b , 都 有 a? b= b 2 + 1 , 例 如 7?4=4 2 +1=17 , 那 么 5?3= ; 當(dāng) m 為 實 數(shù) 時, m? ( m?2 ) = . 9 . 指 出 下 列 多 項 式 的 次 數(shù) 與 項, 并 把 它 們 按 字 母 a 的 升 冪 排 列: ( 1 ) 3 a 2 +5-3 a+ a 3 ; ( 2 ) 2 a 3 b-4 b 3 +5 a 2 . 1 0 . 若( a-4 ) x 4 - x b + x- b 是 關(guān) 于 x 的 二 次 三 項 式, 求 a+ b . 1 1 . 己 知 k 是 常 數(shù), 若 多 項 式 x 2 -3 k x y-3 y 2 -8 不 含 x y 項, 則 k 的 值 是 多 少? 這 時 的 多 項 式 是 幾 次 幾 項 式? 1 2 . 如 圖 所 示, 求: ( 1 ) A B 的 長 度; ( 2 ) 陰 影 部 分 的 周 長; ( 3 ) 陰 影 部 分 的 面 積; ( 4 ) 當(dāng) x=0 . 5 , y=0 . 8 時, 求 陰 影 部 分 的 周 長 和 面 積 . ( 第12 題) 1 3 . 某 人 買 了 50 元 的 月 票 卡, 乘 車 后 的 余 額 如 下 表: 次 數(shù) 余 額 1 50-0 . 8 2 50-1 . 6 3 50-2 . 4 … … 試 求: ( 1 ) 乘 車 m 次 時 的 余 額 為 多 少 元? ( 2 ) 乘 車 13 次 時 的 余 額 是 多 少 元? ( 3 ) 最 多 能 乘 多 少 次 車?第 二 章 整 式 的 加 減 有 時 快 樂 也 會 充 滿 苦 味, 但 總 歸 是 快 樂。 — — — 茨 威 格 3 7 1 4 . 已 知 17 個 連 續(xù) 整 數(shù) 的 和 是 306 , 請 問 緊 接 在 這 17 個 數(shù) 后 面 的 17 個 連 續(xù) 數(shù) 的 和 是 多 少 呢? 1 5 . 填 寫 下 表, 觀 察 其 中 兩 個 式 子 的 值 的 變 化 情 況: x 1 2 3 4 5 6 7 8 4 x+5 6 x-5 ( 1 ) 隨 著 x 的 值 的 逐 漸 變 大, 這 兩 個 式 子 的 值 怎 樣 變 化? ( 2 ) 你 認 為 哪 個 式 子 的 值 最 先 超 過 100 ? 你 估 計 x 為 多 大 時, 這 個 式 子 的 值 開 始 超 過 100 . 1 6 . 假 設(shè) 一 家 旅 館 共 有 30 個 房 間, 分 別 編 以 1~30 這 三 十 個 號 碼 . 現(xiàn) 在 要 在 每 個 房 間 的 鑰 匙 上 刻 上 數(shù) 字, 要 求 所 刻 的 數(shù) 字 必 須 使 服 務(wù) 員 很 容 易 辨 認 是 哪 一 個 房 間 的 鑰 匙, 而 使 局 外 人 不 容 易 猜 到 . 現(xiàn) 在 有 一 種 編 碼 的 方 法 是: 在 每 把 鑰 匙 上 刻 兩 個 數(shù) 字, 左 邊 的 一 個 數(shù) 字 是 這 把 鑰 匙 原 來 的 房 間 號 碼 除 以 5 所 得 的 余 數(shù), 而 右 邊 的 一 個 數(shù) 字 是 這 把 鑰 匙 原 來 的 房 間 號 碼 除 以 7 的 余 數(shù) . ( 1 ) 原 來 房 間 號 碼 為 15 的 鑰 匙 上 刻 的 數(shù) 應(yīng) 該 是 多 少? ( 2 ) 刻 的 數(shù) 是 15 的 鑰 匙 所 對 應(yīng) 的 原 來 房 間 號 碼 應(yīng) 該 是 多 少? 1 7 . ( 1 ) 已 知 一 個 關(guān) 于 字 母 x 的 二 次 三 項 式 的 二 次 項 系 數(shù) 和 常 數(shù) 項 都 是 1 , 一 次 項 系 數(shù) 是 - 1 2 , 則 這 個 二 次 三 項 式 是 ; ( 2 ) 一 個 關(guān) 于 字 母 x , y 的 多 項 式, 除 常 數(shù) 項 外, 其 余 各 項 的 次 數(shù) 都 是 3 , 那 么 這 個 多 項 式 最 多 有 幾 項? 你 能 寫 出 符 合 要 求 的 一 個 多 項 式 嗎? 1 8 . 如 圖, 下 列 圖 案 均 是 用 大 小 相 同 的 正 方 形 按 一 定 的 規(guī) 律 組 合 而 成 的, 組 合 第 1 個 圖 案 需 1 個 小 正 方 形, 組 合 第 2 個 圖 案 需 3 個 小 正 方 形,…, 依 次 規(guī) 律, 組 合 第 n 個 圖 案 需 多 少 個 小 正 方 形? ( 第18 題) 1 9 . ( 2 0 1 0 · 湖 南 懷 化) 若 x=1 , y= 1 2 , 則 x 2 +4 x y+4 y 2 的 值 是( ) . A.2 B.4 C. 3 2 D. 1 2 2 0 . ( 2 0 1 0 · 江 蘇 常 州) 若 實 數(shù) a 滿 足 a 2 -2 a+1=0 , 則 2 a 2 - 4 a+5= . 2 1 . ( 2 0 1 1 · 黑 龍 江 牡 丹 江) 用 大 小 相 同 的 實 心 圓 擺 成 如 圖 所 示 的 圖 案, 按 照 這 樣 的 規(guī) 律 擺 成 的 第 n 個 圖 案 中, 共 有 實 心 圓 的 個 數(shù) 為 . ( 第21 題) 2 2 . ( 2 0 1 1 · 吉 林 長 春) 有 a 名 男 生 和 b 名 女 生 在 社 區(qū) 做 義 工, 他 們 為 建 花 壇 搬 磚 . 男 生 每 人 搬 了 40 塊, 女 生 每 人 搬 了 30 塊, 這 a 名 男 生 和 b 名 女 生 一 共 搬 了 塊 磚 . ( 用 含 a , b 的 代 數(shù) 式 表 示)1 0 19.A 20.A 21.C 22.A 23 . ( 1 ) -26 ( 2 ) 3 ( 3 ) 0 ( 4 ) -1 1 6 24 .-2 25 . ( 1 ) 1 2 1 2001 - 1 ( ) 2003 ( 2 ) 1001 2003 26 . ( 1 ) 對 加、 減、 乘 具 有 封 閉 性, 對 除 法 不 具 有 封 閉 性 . ( 2 ) 2 . 27 . 假 設(shè) 能 夠 填 出 這 樣 的 表, 那 么 五 行、 五 列、 兩 對 角 線 上 的 數(shù) 字 之 和 共 有12 個 不 同 的 整 數(shù) . 但5 個 取 自-1 , 0 , 1 的 數(shù) 字 和 共 有 -5 , -4 ,…, 0 ,…, 4 , 5 共11 個 數(shù), 所 以 滿 足 條 件 的 方 格 表 不 存 在 . 第 二 章 整 式 的 加 減 2 . 1 整 式 第 1 課 時 1.B 2.D 3.A 4.B 5.C 6 . m≠2 , n=3 7 . 答 案 不 唯 一 8 . m n 9 .2012 x 2012 10 .1 . 8 x+4 . 6 11 . 4 3 n+ m 12 . a b-π r 2 13 . 1 4 π R 2 14 .2 4 3 x-2 y , b-3 y 3 6 , 5 m n- n-7 , 6+ a 2 - b 15 . ( 1 ) 不 是, 理 由 略 ( 2 ) 不 是, 理 由 略 ( 3 ) 是, 系 數(shù) 是π , 次 數(shù) 是2 ( 4 ) 是, 系 數(shù) 是- 3 2 , 次 數(shù) 是3 16 . ( 1 ) 次 數(shù) 是3 , 項: a 3 , - a 2 b , a b , - b 3 ( 2 ) 次 數(shù) 是4 , 項: 3 n 4 , -2 n 2 , +1 17 . ( 1 )( n-1 ) + n+ ( n+1 ) 或3 n ( 2 ) n-2 和 n+2 ( 3 ) 3 n+1 和3 n+2 18 .8 2 n+2 19 . m=2 , n≠5 20 .- 1 2 21 .B 22 .∵ 單 項 式- 3 4 x m y n+1 的 次 數(shù) 是5 , ∴ m+ n+1=5 . ∴ m+ n=4 . ∵ m 為 質(zhì) 數(shù), ∴ m=2 或 m=3 . ∴ m=2 , n=2 或 m=3 , n=1 . 23 . m=3 , n=2 , m n =9 24 .-5 25 .2 a b 3 , 2 a 2 b 2 , 2 a 3 b 26 . ( 1 ) 奇 數(shù) 項 的 系 數(shù) 為 負, 偶 數(shù) 項 的 系 數(shù) 為 正, 系 數(shù) 的 絕 對 值 等 于 項 數(shù), 字 母 部 分 是 a 的 冪, 其 次 數(shù) 等 于 項 數(shù) . ( 2 ) 第100 個 是100 a 100 , 第2011 個 是 -2011 a 2011 . ( 3 ) 第 n 個 是( -1 ) n · n · a n , 第( n+1 ) 個 是( -1 ) n+1 ·( n+1 )· a n+1 . 27 .3 28 . ( -2 ) n-1 a n 29 . 答 案 不 唯 一, 例 如 x 2 y 3 . 30 . ( a+1 . 25 b ) 第 2 課 時 1.D 2.A 3.D 4.C 5.C 6.A 7 . ( 6 n+2 ) 8 .10 26 9 . ( 1 ) 次 數(shù) 為3 , 項 為3 a 2 , 5 , -3 a , a 3 , 升 冪 排 列 為: 5-3 a+3 a 2 + a 3 ; ( 2 ) 次 數(shù) 為4 , 項 為2 a 3 b , -4 b 3 , 5 a 2 , 升 冪 排 列 為: -4 b 3 +5 a 2 +2 a 3 b . 10 . ( a-4 ) x 4 - x b + x- b 是 關(guān) 于 x 的 二 次 三 項 式, ∴ ( a-4 ) =0 , b=2 , 即 a=4 , b=2 , ∴ a+ b=6 . 11 . k=0 , 二 次 三 項 式 . 12 . ( 1 ) A B=5 x- x- x=3 x . ( 2 ) 3 y×2+2 y×2+5 x×2=10 x+10 y . ( 3 ) 5 x×3 y-2 y× x=13 x y . ( 4 ) 當(dāng) x=0 . 5 , y=0 . 8 時, 周 長 為13 , 面 積 為5 . 2 . 13 . ( 1 ) 乘 車 m 次 時 的 余 額 為( 50-0 . 8 m ) 元 . ( 2 ) 乘 車13 次 時 的 余 額 是50-13×0 . 8= 39 . 6 ( 元) . ( 3 ) 根 據(jù) 題 意, 得50-0 . 8 m≥0 , 解 得 m≤ 62 . 5 , 所 以 最 多 能 乘62 次 車 . 14 . 設(shè)17 個 連 續(xù) 整 數(shù) 為 m , m+1 , m+2 ,…, m+16 ; 緊 接 著 的17 個 連 續(xù) 整 數(shù) 為 m+17 , m+18 ,…, m+33 ; ∵ 后 面 的 每 一 項 比 前 面 的 每 一 項 大17 , ∴ 后 面17 項 的 和 為306+17×17=595 . 15 . ( 1 ) 兩 個 式 子 的 值 都 隨 x 的 增 大 而 增 大; ( 2 ) 6 x-5 的 值 先 超 過100 ; 當(dāng) x=18 時, 6 x-5=103 , 而4 x+5=77 , 即 當(dāng) x=18 時, 6 x-5 的 值 開 始 超 過100 . 16 . ( 1 ) 按 照 編 碼 的 方 法, 15 能 被5 整 除, 即 余 數(shù) 為0 ; 15 除 以7 的 余 數(shù) 為1 , 所 以 原 來 房 間 號 碼 為15 的 鑰 匙 上 刻 的 數(shù) 應(yīng) 該 是01 . ( 2 ) 鑰 匙 上 刻 的 數(shù) 是15 , 左 邊 的 數(shù) 字 是1 ,1 1 說 明 原 來 房 間 號 碼 除 以5 的 余 數(shù) 為1 , 則 這 個 房 間 號 碼 可 能 是1 , 6 , 11 , 16 , 21 , 26 ; 右 邊 的 數(shù) 字 是5 , 說 明 原 來 房 間 號 碼 除 以7 的 余 數(shù) 為5 , 則 這 個 房 間 號 碼 可 能 是5 , 12 , 19 , 26 , 比 較 這 兩 組 數(shù), 同 時 滿 足 兩 個 條 件 的 數(shù) 字 是26 , 所 以, 刻 的 數(shù) 是15 的 鑰 匙 所 對 應(yīng) 的 原 來 房 間 號 碼 應(yīng) 該 是26 . 17 . ( 1 ) x 2 - 1 2 x+1 ( 2 ) 在 一 個 關(guān) 于 x , y 的 多 項 式 中, 三 次 項 的 項 中 可 含 x 3 , x 2 y , x y 2 , y 3 , 故 符 合 題 意 的 多 項 式 最 多 可 有5 項, 如 x 3 + x 2 y+ x y 2 + y 3 +1 就 是 一 個 符 合 條 件 的 多 項 式 . 18 .2 n-1 19 .B 20 .3 21 .6 n-1 22 . ( 40 a+30 b ) 2 . 2 整 式 的 加 減 第 1 課 時 1.B 2.A 3.D 4.D 5 .2 6 .9 7 .5 x y 8 .0 9 .-3 x 3 +4 x 2 10 . ( 1 ) - 1 2 a 2 b ( 2 ) 2 ( x- y ) 2 11 . ( 1 ) 16 ( 2 ) 68 ( 3 ) 4 n-4 12 . 多 項 式 化 簡 得0 , 所 以 條 件 是 多 余 的, 小 明 的 觀 點 正 確 . 13 . ( 1 ) 11 a+30 ( 2 ) B ( 3 ) 設(shè) 十 位 上 的 數(shù) 為 a , 則 個 位 上 的 數(shù) 字 為 a+1 , 百 位 上 的 數(shù) 字 為2 a , ∴ 這 個 三 位 數(shù) 是100×2 a+10 a+ ( a+ 1 ), 即211 a+1 . ( 4 ) ①100 z+10 y+ x ②100 z+30 z+2 z=132 z ③132 , 264 , 396 14 . 答 案 不 唯 一, 如-3 x 2 y 3 z 15 .B 16 . a2010 的 結(jié) 果 是1 17.C 18.C 19. A 20 . ( -3 x 2 y-2 x y-3 ) - ( 2 x 2 y-3 x y-1 ) =-3 x 2 y-2 x y-3-2 x 2 y+3 x y+1 =-5 x 2 y+ x y-2 第 2 課 時 1.A 2.C 3.C 4.C 5 .-12 a+5 6 .3 a 2 b-10 a b 2 7 .4 a 8 .-2 x 2 +4 x-1 9 . ( 1 ) -7 a 2 b-6 a b 2 -3 c ( 2 ) 原 式= x+ y , 值 為-1 . 10 . A=4 x 2 -5 x+11 11 . ( 2 x 2 + m y-12 ) - ( n x 2 -3 y+6 ) = ( 2- n ) · x 2 + ( m+3 ) y-18 , ∵ 差 式 中 不 含 有 x , y , ∴ 2- n=0 , m+3=0 . ∴ n=2 , m=-3 , 故 m+ n+ m n=-3+ 2+ ( -3 ) ×2=-7 . 12 .3 A+6 B=3 ( 2 x 2 +3 x y-2 x-1 ) +6 ( - x 2 + k x y-1 ) = ( 6 k+9 ) x y-6 x-9 . 因 為 其 值 與 y 無 關(guān), 所 以6 k+9=0 , 即 k=- 3 2 . 13 . 原 式 化 簡 為-2 y 3 , ∴ 其 值 與 x 無 關(guān) . 14 . 用 表 格 表 示 如 下: 步 驟 左 堆 中 堆 右 堆 第 一 步 n n n 第 二 步 n-2 n+2 n 第 三 步 n-2 n+3 n-1 第 四 步 2 ( n-2 ) ( n+3 ) - ( n-2 ) n-1 結(jié) 果 5 第 四 步, 使 左 邊 一 堆 加 倍, 就 是 中 間 一 堆 原 有( n+3 ) 張, 現(xiàn) 在 拿 走( n-2 ) 張, 只 能 是 剩 下5 張 . 15 . 設(shè) 你 想 的 一 個 數(shù) 為 a , 則( 2 a+6 ) ÷2- a= ( a+3 ) - a=3 , 即 不 論 你 想 什 么 數(shù), 結(jié) 果 都 是3 , 與 你 想 的 數(shù) 無 關(guān) . 16 . 周 長 相 同 的 正 方 形 和 圓, 圓 的 面 積 較 大 . 17 . 略 18 .D 19 .D 20 .5 21 . a+5 22 .∵ ( 3 a b-2 a c+5 b c ) - ( a b+2 b c-4 a c ) =3 a b-2 a c+5 b c- a b-2 b c+4 a c =2 a b+2 a c+3 b c , ∴ A- ( a b+2 b c-4 a c ) = ( 2 a b+2 a c+ 3 b c ) - ( a b+2 b c-4 a c ) =2 a b+2 a c+3 b c- a b-2 b c+4 a c = a b+6 a c+ b c . 階 段 測 評( 一) 1 .-7 2 .9 3 .-2 4 .49 或1 5 .-2 3÷ -1 ( ) 1 2 =-2 6 .6 . 43 6 6 . 435 7 . 略 8.B 9.B 10.C 11.D 12.C 13.C
收藏