《圖與網(wǎng)絡(luò)分析》PPT課件

上傳人:san****019 文檔編號(hào):23740848 上傳時(shí)間:2021-06-10 格式:PPT 頁數(shù):190 大?。?.32MB
收藏 版權(quán)申訴 舉報(bào) 下載
《圖與網(wǎng)絡(luò)分析》PPT課件_第1頁
第1頁 / 共190頁
《圖與網(wǎng)絡(luò)分析》PPT課件_第2頁
第2頁 / 共190頁
《圖與網(wǎng)絡(luò)分析》PPT課件_第3頁
第3頁 / 共190頁

下載文檔到電腦,查找使用更方便

14.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《《圖與網(wǎng)絡(luò)分析》PPT課件》由會(huì)員分享,可在線閱讀,更多相關(guān)《《圖與網(wǎng)絡(luò)分析》PPT課件(190頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第 十 一 章 圖 與 網(wǎng) 絡(luò) 分 析Graph theory and network analysis 第 十 一 章 圖 與 網(wǎng) 絡(luò) 分 析11.1 引 言 引 言圖 論 是 專 門 研 究 圖 的 理 論 的 一 門 數(shù) 學(xué) 分 支 ,屬 于 離 散 數(shù) 學(xué) 范 疇 , 與 運(yùn) 籌 學(xué) 有 交 叉 , 它 有200多 年 歷 史 , 大 體 可 劃 分 為 三 個(gè) 階 段 。 引 言第 一 階 段 從 十 八 世 紀(jì) 中 葉 到 十 九 世 紀(jì) 中 葉 , 處 于萌 芽 階 段 , 多 數(shù) 問 題 由 游 戲 而 產(chǎn) 生 , 最有 代 表 性 的 工 作 是 所 謂 的 Euler七 橋

2、 問題 , 即 一 筆 畫 問 題 。 引 言第 二 階 段 從 十 九 世 紀(jì) 中 葉 到 二 十 世 紀(jì) 中 葉 , 這 時(shí) ,圖 論 問 題 大 量 出 現(xiàn) , 如 Hamilton問 題 ,地 圖 染 色 的 四 色 問 題 以 及 可 平 面 性 問 題 等 ,這 時(shí) , 也 出 現(xiàn) 用 圖 解 決 實(shí) 際 問 題 , 如Cayley把 樹 應(yīng) 用 于 化 學(xué) 領(lǐng) 域 , Kirchhoff用 樹 去 研 究 電 網(wǎng) 絡(luò) 等 . 引 言第 三 階 段 二 十 世 紀(jì) 中 葉 以 后 , 由 生 產(chǎn) 管 理 、 軍 事 、交 通 、 運(yùn) 輸 、 計(jì) 算 機(jī) 網(wǎng) 絡(luò) 等 方 面 提 出

3、實(shí) 際問 題 , 以 及 大 型 計(jì) 算 機(jī) 使 大 規(guī) 模 問 題 的 求解 成 為 可 能 , 特 別 是 以 Ford和 Fulkerson建 立 的 網(wǎng) 絡(luò) 流 理 論 , 與 線 性 規(guī) 劃 、 動(dòng) 態(tài) 規(guī)劃 等 優(yōu) 化 理 論 和 方 法 相 互 滲 透 , 促 進(jìn) 了 圖論 對(duì) 實(shí) 際 問 題 的 應(yīng) 用 。 哥 尼 斯 堡 七 橋 問 題 哥 尼 斯 堡 七 橋 問 題 最 后 , 數(shù) 學(xué) 家 Euler在 1736年 巧 妙 地 給 出 了這 個(gè) 問 題 的 答 案 , 并 因 此 奠 定 了 圖 論 的 基 礎(chǔ)Euler把 A、 B、 C、 D四 塊 陸 地 分 別 收 縮

4、 成 四 個(gè)頂 點(diǎn) , 把 橋 表 示 成 連 接 對(duì) 應(yīng) 頂 點(diǎn) 之 間 的 邊 , 問題 轉(zhuǎn) 化 為 從 任 意 一 點(diǎn) 出 發(fā) , 能 不 能 經(jīng) 過 各 邊 一次 且 僅 一 次 , 最 后 返 回 該 點(diǎn) 。 這 就 是 著 名 的Euler問 題 。 哥 尼 斯 堡 七 橋 問 題 哥 尼 斯 堡 七 橋 問 題 圍 坐 問 題 有 7個(gè) 人 圍 桌 而 坐 , 如 果 要 求 每 次 相 鄰 的人 都 與 以 前 完 全 不 同 , 試 問 不 同 的 就 座 方案 共 有 多 少 種 ?用 頂 點(diǎn) 表 示 人 , 用 邊 表 示 兩 者 相 鄰 , 因?yàn)?最 初 任 何 兩 個(gè)

5、 人 都 允 許 相 鄰 , 所 以 任何 兩 點(diǎn) 都 可 以 有 邊 相 連 。 圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 假 定 第 二 次 就 座 方 案 是( 1, 3, 5, 7, 2, 4, 6, 1) ,那 么 第 三 次 就 座 方 案 就 不 允 許 這 些 頂 點(diǎn) 之間 繼 續(xù) 相 鄰 , 只 能 從 圖 中 刪 去 這 些 邊 。圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 圍 坐 問 題

6、圍 坐 問 題 假 定 第 三 次 就 座 方 案 是( 1, 4, 7, 3, 6, 2, 5, 1) , 那 么 第 四次 就 座 方 案 就 不 允 許 這 些 頂 點(diǎn) 之 間 繼 續(xù) 相 鄰 ,只 能 從 圖 中 刪 去 這 些 邊 , 只 留 下 7點(diǎn) 孤 立 點(diǎn) ,所 以 該 問 題 只 有 三 個(gè) 就 座 方 案 。圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 圍 坐 問 題 假 定 第 三 次 就 座 方 案 是( 1, 4, 7, 3, 6, 2, 5, 1) ,那 么 第 四

7、次 就 座 方 案 就 不 允 許 這 些頂 點(diǎn) 之 間 繼 續(xù) 相 鄰 , 只 能 從 圖 中 刪去 這 些 邊 , 只 留 下 7點(diǎn) 孤 立 點(diǎn) , 所 以該 問 題 只 有 三 個(gè) 就 座 方 案 。圍 坐 問 題 哈 密 頓 ( Hamilton) 回 路 是 十 九世 紀(jì) 英 國(guó) 數(shù) 學(xué) 家 哈 密 頓 提 出 , 給 出 一個(gè) 正 12面 體 圖 形 , 共 有 20個(gè) 頂 點(diǎn) 表 示20個(gè) 城 市 , 要 求 從 某 個(gè) 城 市 出 發(fā) 沿 著棱 線 尋 找 一 條 經(jīng) 過 每 個(gè) 城 市 一 次 而 且僅 一 次 , 最 后 回 到 原 處 的 周 游 世 界 線路 ( 并 不

8、 要 求 經(jīng) 過 每 條 邊 ) 。哈 密 頓 回 路 哈 密 頓 回 路 哈 密 頓 回 路 哈 密 頓 回 路 哈 密 頓 回 路 哈 密 頓 回 路 哈 密 頓 回 路 哈 密 頓 回 路 哈 密 頓 回 路 哈 密 頓 回 路 哈 密 頓 回 路 哈 密 頓 回 路 哈 密 頓 回 路 哈 密 頓 回 路 哈 密 頓 回 路 哈 密 頓 回 路 哈 密 頓 回 路 哈 密 頓 回 路 哈 密 頓 回 路 引 言 瑞 士 數(shù) 學(xué) 家 Euler 在 1736年 發(fā) 表 的 一 篇 題 為“ 依 據(jù) 幾 何 位 置 的 解 題 方 法 ” 的 論 文 , 有 效 的 解決 了 哥 尼 斯

9、堡 七 橋 問 題 , 是 有 記 載 的 第 一 篇 圖 論論 文 , Euler被 認(rèn) 為 是 圖 論 的 創(chuàng) 始 人 。 圖 論 的 第 一 本 專 著 是 匈 牙 利 的 O Konig寫 的 “ 有限 圖 與 無 限 圖 的 理 論 ” , 發(fā) 表 于 1936。 從 1736到 1936, 前 后 200年 , 總 的 來 講 這 一 時(shí)期 圖 論 發(fā) 展 緩 慢 。 直 到 20世 紀(jì) 中 葉 , 電 子 計(jì) 算 機(jī) 的 發(fā) 展 和 零 散 數(shù) 學(xué)問 題 具 有 越 來 越 重 要 的 地 位 , 使 得 圖 論 得 以 迅 速發(fā) 展 第 十 一 章 圖 與 網(wǎng) 絡(luò) 分 析11.

10、1 引 言11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 圖 論 是 專 門 研 究 圖 的 理 論 的 一 門數(shù) 學(xué) 分 支 , 主 要 研 究 點(diǎn) 和 線 之 間的 幾 何 關(guān) 系 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念定 義 :圖 是 由 點(diǎn) 集 V=( vi ) 和 V 中 元 素 的 無 序 對(duì) 的 一 個(gè) 集合 E=( ek ) 所 構(gòu) 成 的 二 元 組 , 記 為 G=( V, E) ,其 中 : V= ( v1, v2, . vm) 是 m個(gè) 頂 點(diǎn) 集 合 ; E= ( e1, e2, . en) 是 n條 邊 集 合 。

11、當(dāng) V, E為 有 限 集 合 時(shí) , G稱 為 有 限 圖 , 否 則 稱 為無 限 圖 , 本 章 只 討 論 有 限 圖 。 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念說 明 :( 1) V非 空 , 即 沒 有 頂 點(diǎn) 的 圖 不 討 論 ;( 2) E無 非 空 條 件 , 即 允 許 沒 有 邊 ;( 3) E是 一 個(gè) 不 與 V 中 頂 點(diǎn) 相 交 的 邊 集 合 ; ( 指 點(diǎn) 只 在 邊 的 端 點(diǎn) 處 相 交 )( 4) 任 一 條 邊 必 須 與 一 對(duì) 頂 點(diǎn) 關(guān) 聯(lián) , 反

12、 之 不 然 。 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念定 義對(duì) 任 一 條 邊 ( vi, vj) 屬 于 E,如 果 邊 ( vi, vj) 的 端 點(diǎn) 無 序 , 則 它 是 無 向 邊 , 此時(shí) 圖 為 無 向 圖 。如 果 如 果 邊 ( vi, vj) 的 端 點(diǎn) 有 序 , 則 它 表 示 以 vi為 始 點(diǎn) , v j為 終 點(diǎn) 的 有 向 邊 ( 或 稱 為 弧 ) , 此 時(shí)圖 為 有 向 圖 。 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基

13、本 概 念定 義 ( 鏈 )如 果 圖 中 的 某 些 點(diǎn) 、 邊 可 以 排 列 成 點(diǎn) 和 邊的 交 錯(cuò) 序 列 , 則 稱 此 為 一 條 鏈 。定 義 ( 圈 )如 一 條 鏈 中 起 點(diǎn) 和 終 點(diǎn) 重 合 , 則 稱 此 為 一條 圈 。 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念定 義 ( 鏈 )如 果 圖 中 的 某 些 點(diǎn) 、 邊 可 以 排 列

14、成 點(diǎn) 和 邊的 交 錯(cuò) 序 列 , 則 稱 此 為 一 條 鏈 。定 義 ( 圈 )如 一 條 鏈 中 起 點(diǎn) 和 終 點(diǎn) 重 合 , 則 稱 此 為 一條 圈 。 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念定 義 ( 鏈 )如

15、 果 圖 中 的 某 些 點(diǎn) 、 邊 可 以 排 列 成 點(diǎn) 和 邊的 交 錯(cuò) 序 列 , 則 稱 此 為 一 條 鏈 。定 義 ( 圈 )如 一 條 鏈 中 起 點(diǎn) 和 終 點(diǎn) 重 合 , 則 稱 此 為 一條 圈 。 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 圖 的 矩 陣 表 示 一 個(gè) 圖 非 常 直 觀 , 但 是 不 容 易 計(jì) 算 ,特 別 不 容 易 在 計(jì) 算 機(jī) 上 進(jìn) 行 計(jì) 算 , 一 個(gè) 有效 的 解 決 辦 法 是 將 圖 表 示 成 矩 陣 形 式 , 通常 采 用 的 矩 陣 是 鄰 接 矩 陣 、 邊 長(zhǎng) 鄰 接 矩 陣 、弧 長(zhǎng) 矩 陣 和 關(guān) 聯(lián) 矩

16、陣 。 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念 11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念賦 權(quán) 圖 或 網(wǎng) 絡(luò)在 圖 的 各 邊 上 一 個(gè) 數(shù) 量 指 標(biāo) ( cij) , 具 體 表示 這 條 邊 的 權(quán) ( 距 離 , 單 價(jià) , 通 過 能 力 等 ) 。無 向 網(wǎng) 絡(luò) ; 有 向 網(wǎng) 絡(luò) ; 混 合 網(wǎng) 絡(luò) ;邊 權(quán) 網(wǎng) 絡(luò) ; 點(diǎn) 權(quán) 網(wǎng) 絡(luò) 。 第 十 一 章 圖 與 網(wǎng) 絡(luò) 分 析11.1 引 言11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念11.3 最 短 路 問 題 11.3

17、 最 短 路 問 題對(duì) 一 個(gè) 賦 權(quán) 的 有 向 圖 D ;指 定 的 兩 個(gè) 點(diǎn) Vs 和 Vt ;找 到 一 條 從 Vs 到 Vt 的 路 , 使 得 這 條 路 上 所 有弧 的 權(quán) 數(shù) 的 總 和 最 小 ;這 條 路 被 稱 之 為 從 Vs到 Vt的 最 短 路 。這 條 路 上 所 有 弧 的 權(quán) 數(shù) 總 和 被 稱 為 從 Vs到 Vt的距 離 。 11.3 最 短 路 問 題一 、 求 解 最 短 路 的 Dijkstra算 法 (迪 科 斯 徹 , 雙 標(biāo) 號(hào) 法 ) 對(duì) 圖 中 的 點(diǎn) Vj 賦 予 兩 個(gè) 標(biāo) 號(hào) ( lj, kj) , 第 一 個(gè) 標(biāo) 號(hào) lj 表

18、 示 從 起 點(diǎn) Vs 到 Vj 的 最 短 路 的 長(zhǎng) 度 , 第 二 個(gè) 標(biāo) 號(hào) kj 表 示 在 Vs 到 Vj 的 最 短 路 上 Vj 前 面 一 個(gè)鄰 點(diǎn) 的 下 標(biāo) 。例 如 : V 6( 8,4) 表 示 , 從 起 點(diǎn) V 到 V 的 最 短 路 的 長(zhǎng) 度 為 在 這 條 最 短 路 上 V 的 前 一 個(gè) 鄰 點(diǎn) 為 V 。 11.3 最 短 路 問 題步 驟 :1. 給 出 點(diǎn) V1 以 標(biāo) 號(hào) (0, s)2. 找 出 已 標(biāo) 號(hào) 點(diǎn) 的 集 合 I, 沒 標(biāo) 號(hào) 的 點(diǎn) 的 集 合 J,以 及 弧 的 集 合 3. 如 果 上 述 弧 的 集 合 是 空 集 , 則

19、 計(jì) 算 結(jié) 束 。 如 果 Vt 已 標(biāo) 號(hào) ( lt,kt) , 則 Vs 到 Vt 的 距 離 為 lt 。 如 果 V t 未 標(biāo) 號(hào) , 則 可 以 斷 言 不 存 在 從 Vs到 Vt的 有 向 路 。 如 果 上 述 的 弧 的 集 合 不 是 空 集 , 則 轉(zhuǎn) 下 一 步 。4. 對(duì) 上 述 弧 的 集 合 中 的 每 一 條 弧 , 計(jì) 算 sij=li+cij 。 在 所 有 的 sij中 , 找 到 其 值 為 最 小 的 弧 。 不 妨 設(shè) 此 弧 為( Vc,Vd) , 則 給 此 弧 的 終 點(diǎn) 以 雙 標(biāo) 號(hào) ( scd,c) ,返 回 步 驟 2。( , )

20、| , i j i jv v v I v J 11.3 最 短 路 問 題例 求 下 圖 中 v1 到 v6 的 最 短 路 v23 5 2 7 53 1512v1 v6v 5v3 v4 11.3 最 短 路 問 題解 采 用 Dijkstra算 法 v23 5 2 7 53 1512v1 v6v 5v3 v4 .給 出 點(diǎn) V1 以 標(biāo) 號(hào) (0, s) (0, s) 11.3 最 短 路 問 題解 采 用 Dijkstra算 法 v23 5 2 7 53 1512v1 v6v 5v3 v4(0, s) .找 出 已 標(biāo) 號(hào) 點(diǎn) 的 集 合 I, 沒 標(biāo) 號(hào) 的 點(diǎn) 的 集 合 J, 以 及

21、 弧 的 集 合( , ) | , i j i jv v v I v J 11.3 最 短 路 問 題解 采 用 Dijkstra算 法 v23 5 2 7 53 1512v1 v6v 5v3 v4(0, s) .找 出 已 標(biāo) 號(hào) 點(diǎn) 的 集 合 I, 沒 標(biāo) 號(hào) 的 點(diǎn) 的 集 合 J, 以 及 弧 的 集 合( , ) | , i j i jv v v I v J I V1J V2, V3, V4, V5, V6 11.3 最 短 路 問 題解 采 用 Dijkstra算 法 v23 5 2 7 53 1512v1 v6v 5v3 v4(0, s) .找 出 已 標(biāo) 號(hào) 點(diǎn) 的 集 合

22、I, 沒 標(biāo) 號(hào) 的 點(diǎn) 的 集 合 J, 以 及 弧 的 集 合( , ) | , i j i jv v v I v J I V1J V2, V3, V4, V5, V6 弧 的 集 合 (V1 , V2), (V1 , V3), (V1 , V4)( , ) | , i j i jv v v I v J 11.3 最 短 路 問 題解 采 用 Dijkstra算 法 v23 5 2 7 53 1512v1 v6v 5v3 v4(0, s)2.對(duì) 每 一 條 弧 , 計(jì) 算 sij=li+cij 。 找 到 其 值 為 最 小 的 弧 , 給 此 弧 的 終 點(diǎn) 以 雙 標(biāo) 號(hào) s12=l1

23、+c12 =0 + 3 =3 s13=l1+c13 =0 + 2 =2 s14=l1+c14 =0 + 5 =5 MIN (s12 , s13 , s14) = s13 =2 (2, 1) 11.3 最 短 路 問 題解 采 用 Dijkstra算 法 v23 5 2 7 53 1512v1 v6v 5v3 v4(0, s)3.找 出 已 標(biāo) 號(hào) 點(diǎn) 的 集 合 I, 沒 標(biāo) 號(hào) 的 點(diǎn) 的 集 合 J, 以 及 弧 的 集 合( , ) | , i j i jv v v I v J I V1 , V3 J V2, V4, V5, V6 (2, 1) 11.3 最 短 路 問 題解 采 用 D

24、ijkstra算 法 v23 5 2 7 53 1512v1 v6v 5v3 v4(0, s)3.找 出 已 標(biāo) 號(hào) 點(diǎn) 的 集 合 I, 沒 標(biāo) 號(hào) 的 點(diǎn) 的 集 合 J, 以 及 弧 的 集 合( , ) | , i j i jv v v I v J I V1 , V3 J V2, V4, V5, V6 弧 的 集 合 (V1 , V2), (V1 , V4), (V3 , V4)( , ) | , i j i jv v v I v J (2, 1) 11.3 最 短 路 問 題解 采 用 Dijkstra算 法 v23 5 2 7 53 1512v1 v6v 5v3 v4(0, s)3

25、.對(duì) 每 一 條 弧 , 計(jì) 算 sij=li+cij 。 找 到 其 值 為 最 小 的 弧 , 給 此 弧 的 終 點(diǎn) 以 雙 標(biāo) 號(hào) s12=l1+c12 =0 + 3 =3 s14=l1+c14 =0 + 5 =5 s34=l3+c34 =2 + 1 =3 MIN (s12 , s14 , s34) = s12 = s34 = 3 (2, 1)(3, 1) (3, 3) 11.3 最 短 路 問 題解 采 用 Dijkstra算 法 v23 5 2 7 53 1512v1 v6v 5v3 v4(0, s)4.找 出 已 標(biāo) 號(hào) 點(diǎn) 的 集 合 I, 沒 標(biāo) 號(hào) 的 點(diǎn) 的 集 合 J,

26、 以 及 弧 的 集 合( , ) | , i j i jv v v I v J I V1 , V2, V3, V4 J V5, V6 (2, 1)(3, 1) (3, 3) 11.3 最 短 路 問 題解 采 用 Dijkstra算 法 v23 5 2 7 53 1512v1 v6v 5v3 v4(0, s)4.找 出 已 標(biāo) 號(hào) 點(diǎn) 的 集 合 I, 沒 標(biāo) 號(hào) 的 點(diǎn) 的 集 合 J, 以 及 弧 的 集 合( , ) | , i j i jv v v I v J I V1 , V2, V3, V4 J V5, V6弧 的 集 合 (V2 , V6), (V4 , V6)( , ) |

27、, i j i jv v v I v J (2, 1)(3, 1) (3, 3) 11.3 最 短 路 問 題解 采 用 Dijkstra算 法 v23 5 2 7 53 1512v1 v6v 5v3 v4(0, s)4.對(duì) 每 一 條 弧 , 計(jì) 算 sij=li+cij 。 找 到 其 值 為 最 小 的 弧 , 給 此 弧 的 終 點(diǎn) 以 雙 標(biāo) 號(hào) s26=l2+c26 =3 + 7 =10 s46=l4+c46 =3 + 5 =8MIN (s26 , s46) = s46 = 8 (2, 1)(3, 1) (3, 3) (8, 4) 11.3 最 短 路 問 題解 采 用 Dijks

28、tra算 法 v23 5 2 7 53 1512v1 v6v 5v3 v4(0, s)5.找 出 已 標(biāo) 號(hào) 點(diǎn) 的 集 合 I, 沒 標(biāo) 號(hào) 的 點(diǎn) 的 集 合 J, 以 及 弧 的 集 合( , ) | , i j i jv v v I v J I V1 , V2, V3, V4 , V6 J V6 (2, 1)(3, 1) (3, 3)上 述 弧 的 集 合 是 空 集 , 計(jì) 算 結(jié) 束 。 11.3 最 短 路 問 題解 采 用 Dijkstra算 法 v23 5 2 7 53 1512v1 v6v 5v3 v4(0, s) (2, 1)(3, 1)(3, 3) (8, 4)由 于

29、V 已 標(biāo) 號(hào) ( , )則 V 到 V 的 距 離 為 。最 短 路 徑 為 (由 倒 推 得 到 )V V V V 11.3 最 短 路 問 題 例 電 信 公 司 準(zhǔn) 備 在 甲 、 乙 兩 地 沿 路 架 設(shè) 一 條光 纜 線 , 問 如 何 架 設(shè) 使 其 光 纜 線 路 最 短 ? 下 圖 給 出 了 甲 乙 兩 地 間 的 交 通 圖 。 權(quán) 數(shù) 表 示 兩 地 間 公 路 的 長(zhǎng) 度 ( 單 位 : 公 里 ) 。 V 1 ( 甲 地 ) 15 17 62444 310 6 5V2 V7 ( 乙 地 )V3 V4 V5 V6 11.3 最 短 路 問 題 這 是 一 個(gè) 求 無

30、 向 圖 的 最 短 路 的 問 題 。 可 以 把 無 向 圖 的 每 一 邊 ( vi,vj) 都 用 方 向 相 反 的 兩 條弧 ( vi,vj) 和 ( vj,vi) 代 替 , 就 化 為 有 向 圖 , 也 可 直 接 在 無 向 圖 中 用 Dijkstra算 法 來 求 解 。 只 要 在 算 法 中 把 從 已 標(biāo) 號(hào) 的 點(diǎn) 到 未 標(biāo) 號(hào) 點(diǎn) 弧 的 集 合 改成 已 標(biāo) 號(hào) 點(diǎn) 到 未 標(biāo) 號(hào) 點(diǎn) 邊 的 集 合 即 可 。 11.3 最 短 路 問 題例 求 下 圖 中 v1 到 v 的 最 短 路 V1 15 17 6244310 6 5V2V 3 V4 V5 V

31、6V7 11.3 最 短 路 問 題解 采 用 Dijkstra算 法 .給 出 點(diǎn) V1 以 標(biāo) 號(hào) (0, s)(0, s) V1 15 17 6244310 6 5V2V 3 V4 V5 V6V7 11.3 最 短 路 問 題解 采 用 Dijkstra算 法2. 已 標(biāo) 號(hào) 點(diǎn) 至 沒 標(biāo) 號(hào) 的點(diǎn) 的 邊 的 集 合 (V1 , V2), (V1 , V3) (0, s) V1 15 17 6244310 6 5V2V 3 V4 V5 V6V7 11.3 最 短 路 問 題解 采 用 Dijkstra算 法s 12=l1+c12 =0 + 15 =15s13=l1+c13 =0 +

32、10 =10MIN (s12 , s13) = s13 =102. 已 標(biāo) 號(hào) 點(diǎn) 至 沒 標(biāo) 號(hào) 的點(diǎn) 的 邊 的 集 合 (V1 , V2), (V1 , V3) (0, s) V1 15 17 6244310 6 5V2V3 V4 V5 V6V7(10, 1) 11.3 最 短 路 問 題解 采 用 Dijkstra算 法3. 已 標(biāo) 號(hào) 點(diǎn) 至 沒 標(biāo) 號(hào) 的點(diǎn) 的 邊 的 集 合 (V1 , V2), (V3 , V2) , (V3 , V5) (0, s) V1 15 17 6244310 6 5V2V 3 V4 V5 V6V7(10, 1) 11.3 最 短 路 問 題解 采 用

33、 Dijkstra算 法3. 已 標(biāo) 號(hào) 點(diǎn) 至 沒 標(biāo) 號(hào) 的點(diǎn) 的 邊 的 集 合 (V1 , V2), (V3 , V2) , (V3 , V5) (0, s) V1 15 17 6244310 6 5V2V 3 V4 V5 V6V7(10, 1) s12=l1+c12 =0 + 15 =15 s32=l3+c32 =10 + 3 =13 s35=l3+c35 =10 + 4 =14MIN (s12 , s32 , s35) = s32 =13 (13, 3) 11.3 最 短 路 問 題解 采 用 Dijkstra算 法4. 已 標(biāo) 號(hào) 點(diǎn) 至 沒 標(biāo) 號(hào) 的點(diǎn) 的 邊 的 集 合 (

34、V2 , V4), (V2 , V7) , (V3 , V5) (0, s) V1 15 17 6244310 6 5V2V 3 V4 V5 V6V7(10, 1)(13, 3) 11.3 最 短 路 問 題解 采 用 Dijkstra算 法 s 24=l2+c24 =13 + 6 =19 s27=l2+c27 =13 + 17 =30 s35=l3+c35 =10 + 4 =14MIN (s24 , s27 , s35) = s35 =144. 已 標(biāo) 號(hào) 點(diǎn) 至 沒 標(biāo) 號(hào) 的點(diǎn) 的 邊 的 集 合 (V2 , V4), (V2 , V7) , (V3 , V5) (0, s) V1 15

35、 17 6244310 6 5V2V3 V4 V5 V6V7(10, 1)(13, 3) (14, 3) 11.3 最 短 路 問 題解 采 用 Dijkstra算 法5. 已 標(biāo) 號(hào) 點(diǎn) 至 沒 標(biāo) 號(hào) 的點(diǎn) 的 邊 的 集 合 (V2 , V4), (V2 , V7) , (V5 , V4) , (V5 , V6) (0, s) V1 15 17 6244310 6 5V2V 3 V4 V5 V6V7(10, 1)(13, 3) (14, 3) 11.3 最 短 路 問 題解 采 用 Dijkstra算 法5. 已 標(biāo) 號(hào) 點(diǎn) 至 沒 標(biāo) 號(hào) 的點(diǎn) 的 邊 的 集 合 (V2 , V4),

36、 (V2 , V7) , (V5 , V4) , (V5 , V6) (0, s) V1 15 17 6244310 6 5V2V 3 V4 V5 V6V7(10, 1)(13, 3) (14, 3) s24=l2+c24 =13 + 6 =19 s27=l2+c27 =13 + 17 =30 s54=l5+c54 =14 + 4 =18 s56=l5+c56 =14 + 2 =16MIN (s24 , s27 , s54 , s56) = s56 =16 (16, 5) 11.3 最 短 路 問 題解 采 用 Dijkstra算 法6. 已 標(biāo) 號(hào) 點(diǎn) 至 沒 標(biāo) 號(hào) 的點(diǎn) 的 邊 的 集

37、合 (V2 , V4), (V2 , V7) , (V5 , V4) , (V6 , V7) (0, s) V1 15 17 6244310 6 5V2V 3 V4 V5 V6V7(10, 1)(13, 3) (14, 3)(16, 5) 11.3 最 短 路 問 題解 采 用 Dijkstra算 法6. 已 標(biāo) 號(hào) 點(diǎn) 至 沒 標(biāo) 號(hào) 的點(diǎn) 的 邊 的 集 合 (V2 , V4), (V2 , V7) , (V5 , V4) , (V6 , V7) (0, s) V1 15 17 6244310 6 5V2V 3 V4 V5 V6V7(10, 1)(13, 3) (14, 3)(16, 5)

38、 s24=l2+c24 =13 + 6 =19 s27=l2+c27 =13 + 17 =30 s54=l5+c54 =14 + 4 =18 s67=l6+c67 =16 + 6 =22MIN (s24 , s27 , s54 , s67) = s54 =18 (18, 5) 11.3 最 短 路 問 題解 采 用 Dijkstra算 法7. 已 標(biāo) 號(hào) 點(diǎn) 至 沒 標(biāo) 號(hào) 的點(diǎn) 的 邊 的 集 合 (V2 , V7), (V4 , V7) , (V6 , V7) (0, s) V1 15 17 6244310 6 5V2V 3 V4 V5 V6V7(10, 1)(13, 3) (14, 5)

39、(16, 5)(18, 5) 11.3 最 短 路 問 題解 采 用 Dijkstra算 法7. 已 標(biāo) 號(hào) 點(diǎn) 至 沒 標(biāo) 號(hào) 的點(diǎn) 的 邊 的 集 合 (V2 , V7), (V4 , V7) , (V6 , V7) (0, s) V1 15 17 6244310 6 5V2V 3 V4 V5 V6V7(10, 1)(13, 3) (14, 5)(16, 5)(18, 5) s27=l2+c27 =13 + 17 =30 s47=l4+c47 =18 + 5 =23 s67=l6+c67 =16 + 6 =22MIN (s27 , s47 , s67) = s67 =22 (22, 6)

40、11.3 最 短 路 問 題解 采 用 Dijkstra算 法8. 已 標(biāo) 號(hào) 點(diǎn) 至 沒 標(biāo) 號(hào) 的點(diǎn) 的 邊 的 集 合為 空 , 計(jì) 算 結(jié) 束 (0, s) V1 15 17 6244310 6 5V2V 3 V4 V5 V6V7(10, 1)(13, 3) (14, 5)(16, 5)(18, 5) (22, 6) 11.3 最 短 路 問 題解 采 用 Dijkstra算 法(0, s) V1 15 17 6244310 6 5V2V 3 V4 V5 V6V7(10, 1)(13, 3) (14, 3)(16, 5)(18, 5) (22, 6)由 于 V 7 已 標(biāo) 號(hào) ( 22

41、,6)則 V 到 V 的 距 離 為 22。最 短 路 徑 為 V V3 V5 V6 V7 11.3 最 短 路 問 題習(xí) 題 采 用 Dijkstra算 法 求 V 到 V8 的 最 短 路4 95 41676 544 7 5 V1 V8 V2 V4 V6 V 3 V5 V7 11.3 最 短 路 問 題4 95 41676 544 7 5 V1 V8 V2 V4 V6 V 3 V5 V7(0, s) 11.3 最 短 路 問 題4 95 41676 544 7 5 V1 V8 V2 V4 V6 V 3 V5 V7(0, s) (4, 1) 11.3 最 短 路 問 題4 95 41676

42、544 7 5 V1 V8 V2 V4 V6 V 3 V5 V7(0, s) (4, 1) 11.3 最 短 路 問 題4 95 41676 544 7 5 V1 V8 V2 V4 V6 V 3 V5 V7(0, s) (4, 1)(6, 1) 11.3 最 短 路 問 題4 95 41676 544 7 5 V1 V8 V2 V4 V6 V 3 V5 V7(0, s) (4, 1)(6, 1) 11.3 最 短 路 問 題4 95 41676 544 7 5 V1 V8 V2 V4 V6 V 3 V5 V7(0, s) (4, 1)(6, 1) (8, 2) 11.3 最 短 路 問 題4

43、95 41676 544 7 5 V1 V8 V2 V4 V6 V 3 V5 V7(0, s) (4, 1)(6, 1) (8, 2) 11.3 最 短 路 問 題4 95 41676 544 7 5 V1 V8 V2 V4 V6 V 3 V5 V7(0, s) (4, 1)(6, 1) (8, 2)(9, 2) 11.3 最 短 路 問 題4 95 41676 544 7 5 V1 V8 V2 V4 V6 V 3 V5 V7(0, s) (4, 1)(6, 1) (8, 2)(9, 2) 11.3 最 短 路 問 題4 95 41676 544 7 5 V1 V8 V2 V4 V6 V 3

44、V5 V7(0, s) (4, 1)(6, 1) (8, 2)(9, 2) (13, 5) 11.3 最 短 路 問 題4 95 41676 544 7 5 V1 V8 V2 V4 V6 V 3 V5 V7(0, s) (4, 1)(6, 1) (8, 2)(9, 2) (13, 5) 11.3 最 短 路 問 題4 95 41676 544 7 5 V1 V8 V2 V4 V6 V 3 V5 V7(0, s) (4, 1)(6, 1) (8, 2)(9, 2) (13, 5)(14, 5) 11.3 最 短 路 問 題4 95 41676 544 7 5 V1 V8 V2 V4 V6 V 3

45、 V5 V7(0, s) (4, 1)(6, 1) (8, 2)(9, 2) (13, 5)(14, 5) 11.3 最 短 路 問 題4 95 41676 544 7 5 V1 V8 V2 V4 V6 V 3 V5 V7(0, s) (4, 1)(6, 1) (8, 2)(9, 2) (13, 5)(14, 5) (15, 7) 11.3 最 短 路 問 題4 95 41676 544 7 5 V1 V8 V2 V4 V6 V 3 V5 V7(0, s) (4, 1)(6, 1) (8, 2)(9, 2) (13, 5)(14, 5) (15, 7) 由 于 V8 已 標(biāo) 號(hào) ( 15,7)

46、則 V 到 V8的 距 離 為 15。最 短 路 徑 為 V V2 V5 V7 V8 11.3 最 短 路 問 題6 V1 V8 V2 V 5 V7(0, s) (4, 1) (8, 2) (14, 5) (15, 7) 由 于 V8 已 標(biāo) 號(hào) ( 15,7)則 V 到 V8的 距 離 為 15。最 短 路 徑 為 V V2 V5 V7 V8 11.3 最 短 路 問 題例 某 公 司 使 用 一 臺(tái) 設(shè) 備 , 在 每 年 年 初 , 公 司 就 要決 定 是 購(gòu) 買 新 的 設(shè) 備 還 是 繼 續(xù) 使 用 舊 設(shè) 備 。 如 果 購(gòu) 置 新 設(shè) 備 , 就 要 支 付 一 定 的 購(gòu) 置

47、 費(fèi) , 當(dāng)然 新 設(shè) 備 的 維 修 費(fèi) 用 就 低 。 如 果 繼 續(xù) 使 用 舊 設(shè) 備 , 可 以 省 去 購(gòu) 置 費(fèi) , 但 維修 費(fèi) 用 就 高 了 。 請(qǐng) 設(shè) 計(jì) 一 個(gè) 五 年 之 內(nèi) 的 更 新 設(shè) 備 的 計(jì) 劃 , 使 得五 年 內(nèi) 購(gòu) 置 費(fèi) 用 和 維 修 費(fèi) 用 總 的 支 付 費(fèi) 用 最 小 。 11.3 最 短 路 問 題設(shè) 備 每 年 年 初 的 價(jià) 格 表設(shè) 備 維 修 費(fèi) 如 下 表年 份 1 2 3 4 5年 初 價(jià) 格 11 11 12 12 13使 用 年 數(shù) 0-1 1-2 2-3 3-4 4-5每 年 維 修費(fèi) 用 5 6 8 11 18 年 份

48、 1 2 3 4 5年 初 價(jià) 格 11 11 12 12 13使 用 年 數(shù) 0-1 1-2 2-3 3-4 4-5每 年 維 修費(fèi) 用 5 6 8 11 181 2 3 4 5 6第 1年 購(gòu) 入 新 設(shè) 備 16 22 30 41 59第 2年 購(gòu) 入 新 設(shè) 備 16 22 30 41第 3年 購(gòu) 入 新 設(shè) 備 17 23 31 第 4年 購(gòu) 入 新 設(shè) 備 17 23第 5年 購(gòu) 入 新 設(shè) 備 18第 6年 購(gòu) 入 新 設(shè) 備 11.3 最 短 路 問 題例 3的 解 : 用 vi表 示 “ 第 i年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 ” , 弧 ( vi,vj) 表 示 第

49、i年 年 初 購(gòu) 進(jìn) 的 設(shè) 備 一 直 使 用 到 第 j年 年 初 。v 1 v2 v3 v4 v5 v616 22 30 41 5916 22 30 41 3123 17 1817 23 11.3 最 短 路 問 題例 3的 解 : 用 vi表 示 “ 第 i年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 ” , 弧 ( vi,vj) 表 示 第 i年 年 初 購(gòu) 進(jìn) 的 設(shè) 備 一 直 使 用 到 第 j年 年 初 。v 1 v2 v3 v4 v5 v616 22 30 41 5916 22 30 41 3123 17 1817 23 11.3 最 短 路 問 題例 3的 解 : 用 vi表

50、示 “ 第 i年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 ” , 弧 ( vi,vj) 表 示 第 i年 年 初 購(gòu) 進(jìn) 的 設(shè) 備 一 直 使 用 到 第 j年 年 初 。v 1 v2 v3 v4 v5 v6( v1,v4) 表 示 , 第 1年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 , 使 用 到 第 4年 年 初 。( v4,v5) 表 示 , 第 4年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 , 使 用 到 第 5年 年 初( v5,v6) 表 示 , 第 5年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 , 使 用 到 第 6年 年 初30 17 18 11.3 最 短 路 問 題例 3的 解 : 用

51、 vi表 示 “ 第 i年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 ” , 弧 ( vi,vj) 表 示 第 i年 年 初 購(gòu) 進(jìn) 的 設(shè) 備 一 直 使 用 到 第 j年 年 初 。v 1 v2 v3 v4 v5 v616 22 30 41 5916 22 30 41 3123 17 1817 23(0, s) 11.3 最 短 路 問 題例 3的 解 : 用 vi表 示 “ 第 i年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 ” , 弧 ( vi,vj) 表 示 第 i年 年 初 購(gòu) 進(jìn) 的 設(shè) 備 一 直 使 用 到 第 j年 年 初 。v 1 v2 v3 v4 v5 v616 22 30 41

52、5916 22 30 41 3123 17 1817 23(0, s) (16, 1) 11.3 最 短 路 問 題例 3的 解 : 用 vi表 示 “ 第 i年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 ” , 弧 ( vi,vj) 表 示 第 i年 年 初 購(gòu) 進(jìn) 的 設(shè) 備 一 直 使 用 到 第 j年 年 初 。v 1 v2 v3 v4 v5 v616 22 30 41 5916 22 30 41 3123 17 1817 23(0, s) (16, 1) 11.3 最 短 路 問 題例 3的 解 : 用 vi表 示 “ 第 i年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 ” , 弧 ( vi,v

53、j) 表 示 第 i年 年 初 購(gòu) 進(jìn) 的 設(shè) 備 一 直 使 用 到 第 j年 年 初 。v 1 v2 v3 v4 v5 v616 22 30 41 5916 22 30 41 3123 17 1817 23(0, s) (16, 1) (22, 1) 11.3 最 短 路 問 題例 3的 解 : 用 vi表 示 “ 第 i年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 ” , 弧 ( vi,vj) 表 示 第 i年 年 初 購(gòu) 進(jìn) 的 設(shè) 備 一 直 使 用 到 第 j年 年 初 。v 1 v2 v3 v4 v5 v616 22 30 41 5916 22 30 41 3123 17 1817 2

54、3(0, s) (16, 1) (22, 1) 11.3 最 短 路 問 題例 3的 解 : 用 vi表 示 “ 第 i年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 ” , 弧 ( vi,vj) 表 示 第 i年 年 初 購(gòu) 進(jìn) 的 設(shè) 備 一 直 使 用 到 第 j年 年 初 。v 1 v2 v3 v4 v5 v616 22 30 41 5916 22 30 41 3123 17 1817 23(0, s) (16, 1)(22, 1) (30, 1) 11.3 最 短 路 問 題例 3的 解 : 用 vi表 示 “ 第 i年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 ” , 弧 ( vi,vj) 表

55、示 第 i年 年 初 購(gòu) 進(jìn) 的 設(shè) 備 一 直 使 用 到 第 j年 年 初 。v 1 v2 v3 v4 v5 v616 22 30 41 5916 22 30 41 3123 17 1817 23(0, s) (16, 1) (22, 1)(30, 1) 11.3 最 短 路 問 題例 3的 解 : 用 vi表 示 “ 第 i年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 ” , 弧 ( vi,vj) 表 示 第 i年 年 初 購(gòu) 進(jìn) 的 設(shè) 備 一 直 使 用 到 第 j年 年 初 。v 1 v2 v3 v4 v5 v616 22 30 41 5916 22 30 41 3123 17 1817

56、 23(0, s) (16, 1) (22, 1)(30, 1) (41, 1) 11.3 最 短 路 問 題例 3的 解 : 用 vi表 示 “ 第 i年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 ” , 弧 ( vi,vj) 表 示 第 i年 年 初 購(gòu) 進(jìn) 的 設(shè) 備 一 直 使 用 到 第 j年 年 初 。v 1 v2 v3 v4 v5 v616 22 30 41 5916 22 30 41 3123 17 1817 23(0, s) (16, 1) (22, 1)(30, 1) (41, 1) 11.3 最 短 路 問 題例 3的 解 : 用 vi表 示 “ 第 i年 年 初 購(gòu) 進(jìn) 一

57、臺(tái) 新 設(shè) 備 ” , 弧 ( vi,vj) 表 示 第 i年 年 初 購(gòu) 進(jìn) 的 設(shè) 備 一 直 使 用 到 第 j年 年 初 。v 1 v2 v3 v4 v5 v616 22 30 41 5916 22 30 41 3123 17 1817 23(0, s) (16, 1) (22, 1)(30, 1) (41, 1) (53, 3)(53, 4) 11.3 最 短 路 問 題例 3的 解 : 用 vi表 示 “ 第 i年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 ” , 弧 ( vi,vj) 表 示 第 i年 年 初 購(gòu) 進(jìn) 的 設(shè) 備 一 直 使 用 到 第 j年 年 初 。v 1 v2 v

58、3 v4 v5 v616 22 30 41 5916 22 30 41 3123 17 1817 23(0, s) (16, 1) (22, 1)(30, 1) (41, 1) (53, 3)(53, 4) 11.3 最 短 路 問 題其 最 短 路 有 兩 條 : V V3 V6 ; V V4 V6 .即 第 1年 年 初 購(gòu) 進(jìn) 新 設(shè) 備 使 用 到 第 3年 年 初 , 第 3年 年 初 購(gòu) 進(jìn) 新 設(shè) 備 使用 到 第 5年 年 底 ; 或 第 1年 年 初 購(gòu) 進(jìn) 新 設(shè) 備 使 用 到 第 4年 年 初 , 第 4年 年 初 購(gòu) 進(jìn) 新 設(shè) 備 使 用 到 第 5年 年 底 。

59、費(fèi) 用 均 為 53。v 1 v2 v3 v4 v5 v616 22 30 41 5916 22 30 41 3123 17 1817 23(0, s) (16, 1) (22, 1)(30, 1) (41, 1) (53, 3)(53, 4) 11.3 最 短 路 問 題其 最 短 路 有 兩 條 : V V3 V6 ; V V4 V6 .即 第 1年 年 初 購(gòu) 進(jìn) 新 設(shè) 備 使 用 到 第 3年 年 初 , 第 3年 年 初 購(gòu) 進(jìn) 新 設(shè) 備 使用 到 第 5年 年 底 ; 或 第 1年 年 初 購(gòu) 進(jìn) 新 設(shè) 備 使 用 到 第 4年 年 初 , 第 4年 年 初 購(gòu) 進(jìn) 新 設(shè)

60、備 使 用 到 第 5年 年 底 。 費(fèi) 用 均 為 53。v 1 v2 v3 v4 v5 v631 1822 (53, 3)(22, 1) 11.3 最 短 路 問 題其 最 短 路 有 兩 條 : V V3 V6 ; V V4 V6 .即 第 1年 年 初 購(gòu) 進(jìn) 新 設(shè) 備 使 用 到 第 3年 年 初 , 第 3年 年 初 購(gòu) 進(jìn) 新 設(shè) 備 使用 到 第 5年 年 底 ; 或 第 1年 年 初 購(gòu) 進(jìn) 新 設(shè) 備 使 用 到 第 4年 年 初 , 第 4年 年 初 購(gòu) 進(jìn) 新 設(shè) 備 使 用 到 第 5年 年 底 。 費(fèi) 用 均 為 53。v 1 v2 v3 v4 v5 v630 2

61、3 (53, 4)(30, 1) 11.3 最 短 路 問 題第 1年 第 2年 第 3年 第 4年 第 5年購(gòu) 買 費(fèi) 11 12 13 14 14機(jī) 器 役 齡 0 1 1 2 2 3 3 4 4 5維 修 費(fèi) 5 6 8 11 18 殘 值 4 3 2 1 0習(xí) 題 : 工 廠 使 用 一 臺(tái) 設(shè) 備 , 每 年 年 初 作 出 決 定 , 如 果繼 續(xù) 使 用 舊 的 , 要 支 付 維 修 費(fèi) , 如 果 購(gòu) 買 新 的 支 付 購(gòu)買 費(fèi) 。 試 制 定 五 年 更 新 計(jì) 劃 11.3 最 短 路 問 題1 2 3 4 5 6第 1年 購(gòu) 入 新 設(shè) 備 12 19 28 40 5

62、9第 2年 購(gòu) 入 新 設(shè) 備 13 20 29 41第 3年 購(gòu) 入 新 設(shè) 備 14 21 30第 4年 購(gòu) 入 新 設(shè) 備 15 22 第 5年 購(gòu) 入 新 設(shè) 備 15第 6年 購(gòu) 入 新 設(shè) 備 第 1年 第 2年 第 3年 第 4年 第 5年購(gòu) 買 費(fèi) 11 12 13 14 14機(jī) 器 役 齡 0 1 1 2 2 3 3 4 4 5維 修 費(fèi) 5 6 8 11 18殘 值 4 3 2 1 0 v1 v2 v3 v4 v5 v61219 28 40 59表 示 , 第 1年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 , 使 用 到 第 2-6年 年 初 的 費(fèi) 用 。 v1 v2 v3

63、v4 v5 v61219 28 40 5920 29 41表 示 , 第 2年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 , 使 用 到 第 3-6年 年 初 的 費(fèi) 用 。13 v1 v2 v3 v4 v5 v61219 28 40 5920 29 41表 示 , 第 3年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 , 使 用 到 第 4-6年 年 初 的 費(fèi) 用 。14 21 3013 v1 v2 v3 v4 v5 v61219 28 40 592013 29 41表 示 , 第 4年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 , 使 用 到 第 5-6年 年 初 的 費(fèi) 用 。14 21 3015 22

64、v1 v2 v3 v4 v5 v61219 28 40 592013 29 41表 示 , 第 5年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 , 使 用 到 第 6年 年 初 的 費(fèi) 用 。14 21 3015 2215 v1 v2 v3 v4 v5 v61219 28 40 592013 29 4114 21 3015 2215(0, s) v1 v2 v3 v4 v5 v61219 28 40 592013 29 4114 21 3015 2215(0, s) (12, 2) v1 v2 v3 v4 v5 v61219 28 40 592013 29 4114 21 3015 2215(0,

65、s) (12, 2) (19, 3) v1 v2 v3 v4 v5 v61219 28 40 592013 29 4114 21 3015 2215(0, s) (12, 2) (19, 3) (49, 3) v1 v2 v3 v4 v5 v61219 28 40 592013 29 41表 示 , 第 2年 年 初 購(gòu) 進(jìn) 一 臺(tái) 新 設(shè) 備 , 使 用 到 第 3-6年 年 初 的 費(fèi) 用 。14 21 3015 2215 第 十 一 章 圖 與 網(wǎng) 絡(luò) 分 析11.1 引 言11.2 圖 與 網(wǎng) 絡(luò) 的 基 本 概 念11.3 最 短 路 問 題11.4 最 小 生 成 樹 問 題 11

66、.4 最 小 生 成 樹 問 題 樹 是 圖 論 中 的 重 要 概 念 , 所 謂 樹 就 是 一 個(gè) 無 圈 的 連 通 圖 。v1v2 v3 v 4v5v6 v7v8 v9 v1v2 v3 v5v8v7v6v4 v1v2v3 v4v5v7 v6 v8 v9(a) (b) (c) 11.4 最 小 生 成 樹 問 題 樹 是 圖 論 中 的 重 要 概 念 , 所 謂 樹 就 是 一 個(gè) 無 圈 的 連 通 圖 。v1v2 v3 v 4v5v6 v7v8 v9 v1v2 v3 v5v8v7v6v4 v1v2v3 v4v5v7 v6 v8 v9(a) (b) (c)無圈 連通 11.4 最 小 生 成 樹 問 題 無 向 圖 G=(V,E), 保 留 G的 所 有 點(diǎn) , 而 刪 掉 部 分 G的 邊 或 者 保 留 部 分 G的 邊 , 所 獲 得 的 圖 G, 稱 之 為 G的 生 成 子 圖 ; 11.4 最 小 生 成 樹 問 題 無 向 圖 G=(V,E), 保 留 G的 所 有 點(diǎn) , 而 刪 掉 部 分 G的 邊 或 者 保 留 部 分 G的 邊 , 所 獲 得 的 圖

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!