高考數(shù)學二輪復習 專題能力訓練8 利用導數(shù)解不等式及參數(shù)范圍 文-人教版高三數(shù)學試題

上傳人:文*** 文檔編號:238384038 上傳時間:2024-01-01 格式:DOCX 頁數(shù):14 大?。?1.39KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學二輪復習 專題能力訓練8 利用導數(shù)解不等式及參數(shù)范圍 文-人教版高三數(shù)學試題_第1頁
第1頁 / 共14頁
高考數(shù)學二輪復習 專題能力訓練8 利用導數(shù)解不等式及參數(shù)范圍 文-人教版高三數(shù)學試題_第2頁
第2頁 / 共14頁
高考數(shù)學二輪復習 專題能力訓練8 利用導數(shù)解不等式及參數(shù)范圍 文-人教版高三數(shù)學試題_第3頁
第3頁 / 共14頁

本資源只提供3頁預覽,全部文檔請下載后查看!喜歡就下載吧,查找使用更方便

10 積分

下載資源

資源描述:

《高考數(shù)學二輪復習 專題能力訓練8 利用導數(shù)解不等式及參數(shù)范圍 文-人教版高三數(shù)學試題》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學二輪復習 專題能力訓練8 利用導數(shù)解不等式及參數(shù)范圍 文-人教版高三數(shù)學試題(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題能力訓練8 利用導數(shù)解不等式及參數(shù)范圍 一、能力突破訓練 1.已知函數(shù)f(x)=ax2+bx-ln x,a,b∈R. (1)若a<0,且b=2-a,試討論f(x)的單調(diào)性; (2)若對?b∈[-2,-1],?x∈(1,e)使得f(x)<0成立,求實數(shù)a的取值范圍. 2.(2018全國Ⅰ,文21)已知函數(shù)f(x)=aex-ln x-1. (1)設(shè)x=2是f(x)的極值點,求a,并求f(x)的單調(diào)區(qū)間; (2)證明:當a≥1e時,f(x)≥0. 3.已知函數(shù)f(x)=ax+xln x的圖象在x=e(e為自然對數(shù)的底數(shù))處的切線的斜率為3. (1)求實數(shù)

2、a的值; (2)若f(x)≤kx2對任意x>0成立,求實數(shù)k的取值范圍; (3)當n>m>1(m,n∈N*)時,證明:nmmn>mn. 4.已知函數(shù)f(x)=ln x-ax,其中a∈R. (1)當a=-1時,判斷f(x)的單調(diào)性; (2)若g(x)=f(x)+ax在其定義域內(nèi)為減函數(shù),求實數(shù)a的取值范圍; (3)當a=0時,函數(shù)f(x)的圖象關(guān)于y=x對稱得到函數(shù)h(x)的圖象,若直線y=kx與曲線y=2x+1?(x)沒有公共點,求k的取值范圍. 5.設(shè)函數(shù)f(x)=aln x,g(x)=12x2. (1)記g'(x)為g(x)的導函數(shù),若不等式

3、f(x)+2g'(x)≤(a+3)x-g(x)在x∈[1,e]內(nèi)有解,求實數(shù)a的取值范圍; (2)若a=1,對任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,求m(m∈Z,m≤1)的值. 6.已知函數(shù)f(x)=ln x-(x-1)22. (1)求函數(shù)f(x)的單調(diào)遞增區(qū)間; (2)證明:當x>1時,f(x)1,當x∈(1,x0)時,恒有f(x)>k(x-1). 二、思維提升訓練 7.已知函數(shù)f(x)=x3+ax2+bx+1(a>0,

4、b∈R)有極值,且導函數(shù)f'(x)的極值點是f(x)的零點.(極值點是指函數(shù)取極值時對應的自變量的值) (1)求b關(guān)于a的函數(shù)解析式,并寫出定義域; (2)證明:b2>3a; (3)若f(x),f'(x)這兩個函數(shù)的所有極值之和不小于-72,求a的取值范圍. 8.設(shè)函數(shù)f(x)=x3-ax-b,x∈R,其中a,b∈R. (1)求f(x)的單調(diào)區(qū)間; (2)若f(x)存在極值點x0,且f(x1)=f(x0),其中x1≠x0,求證:x1+2x0=0; (3)設(shè)a>0,函數(shù)g(x)=|f(x)|,求證:g(x)在區(qū)間[-1,1]上的最大值不小

5、于14. 專題能力訓練8 利用導數(shù)解不等式及參數(shù)范圍 一、能力突破訓練 1.解(1)f'(x)=2ax+(2-a)-1x=2ax2+(2-a)x-1x=(ax+1)(2x-1)x. 當-1a<12,即a<-2時,f(x)的單調(diào)遞增區(qū)間為-1a,12,單調(diào)遞減區(qū)間為0,-1a,12,+∞; 當-1a=12,即a=-2時,f(x)在區(qū)間(0,+∞)上單調(diào)遞減; 當-1a>12,即0>a>-2時,f(x)的單調(diào)遞增區(qū)間為12,-1a,單調(diào)遞減區(qū)間為0,12,-1a,+∞. (2)對?b∈[-2,-1],?x∈(1,e)使得ax2+bx-lnx<0成立, 即ax2-x-lnx<0在區(qū)間

6、(1,e)內(nèi)有解,即a2時,f'(x)>0. 所以f(x)在區(qū)間(0,2)內(nèi)

7、單調(diào)遞減,在區(qū)間(2,+∞)內(nèi)單調(diào)遞增. (2)證明當a≥1e時,f(x)≥exe-lnx-1. 設(shè)g(x)=exe-lnx-1,則g'(x)=exe?1x. 當01時,g'(x)>0.所以x=1是g(x)的最小值點. 故當x>0時,g(x)≥g(1)=0. 因此,當a≥1e時,f(x)≥0. 3.(1)解∵f(x)=ax+xlnx, ∴f'(x)=a+lnx+1. 又f(x)的圖象在x=e處的切線的斜率為3, ∴f'(e)=3,即a+lne+1=3,∴a=1. (2)解由(1)知,f(x)=x+xlnx, 若f(x)≤kx2對任意x>0

8、成立,則k≥1+lnxx對任意x>0成立. 令g(x)=1+lnxx,則問題轉(zhuǎn)化為求g(x)的最大值,g'(x)=1x·x-(1+lnx)x2=-lnxx2. 令g'(x)=0,解得x=1. 當00, ∴g(x)在區(qū)間(0,1)內(nèi)是增函數(shù); 當x>1時,g'(x)<0, ∴g(x)在區(qū)間(1,+∞)內(nèi)是減函數(shù). 故g(x)在x=1處取得最大值g(1)=1, ∴k≥1即為所求. (3)證明令h(x)=xlnxx-1,則h'(x)=x-1-lnx(x-1)2. 由(2)知,x≥1+lnx(x>0), ∴h'(x)≥0, ∴h(x)是區(qū)間(1,+∞)內(nèi)

9、的增函數(shù). ∵n>m>1,∴h(n)>h(m),即nlnnn-1>mlnmm-1, ∴mnlnn-nlnn>mnlnm-mlnm, 即mnlnn+mlnm>mnlnm+nlnn, ∴l(xiāng)nnmn+lnmm>lnmmn+lnnn. 整理,得ln(mnn)m>ln(nmm)n. ∴(mnn)m>(nmm)n,∴nmmn>mn. 4.解(1)函數(shù)f(x)的定義域為(0,+∞),且f'(x)=x-1x2, ∵當01時,f'(x)>0, ∴f(x)在區(qū)間(0,1)內(nèi)為減函數(shù),在區(qū)間(1,+∞)內(nèi)為增函數(shù). (2)由g(x)=f(x)+ax=lnx-ax

10、+ax,可知函數(shù)g(x)的定義域為(0,+∞),g'(x)=ax2+x+ax2. ∵g(x)在其定義域內(nèi)為減函數(shù), ∴?x∈(0,+∞),g'(x)≤0. ∴ax2+x+a≤0?a(x2+1)≤-x?a≤-xx2+1?a≤-xx2+1min. 又xx2+1=1x+1x≤12,∴-xx2+1≥-12, 當且僅當x=1時取等號.∴a≤-12. (3)∵當a=0時,f(x)=lnx,∴h(x)=ex. 直線l:y=kx與曲線y=2x+1?(x)=2x+1ex沒有公共點,等價于關(guān)于x的方程(k-2)x=1ex(*)在R上沒有實數(shù)解, ①當k=2時,方程(*)可化為1ex=0,其在R上沒

11、有實數(shù)解. ②當k≠2時,方程(*)可化為1k-2=xex. 令g(x)=xex,則有g(shù)'(x)=(1+x)ex. 令g'(x)=0,得x=-1, 當x在區(qū)間(-∞,+∞)內(nèi)變化時,g'(x),g(x)的變化情況如下表: x (-∞,-1) -1 (-1,+∞) g'(x) - 0 + g(x) ↘ -1e ↗ 當x=-1時,g(x)min=-1e,同時當x趨于+∞時,g(x)趨于+∞,故g(x)的取值范圍為-1e,+∞. 因此當1k-2∈-∞,-1e時,方程(*)無實數(shù)解,解得k的取值范圍是(2-e,2). 綜合①②,可知k的取值范圍是(2-e,2]

12、. 5.解(1)不等式f(x)+2g'(x)≤(a+3)x-g(x), 即alnx+2x≤(a+3)x-12x2, 化簡,得a(x-lnx)≥12x2-x. 由x∈[1,e]知x-lnx>0, 因而a≥12x2-xx-lnx.設(shè)y=12x2-xx-lnx, 則y'=(x-1)(x-lnx)-1-1x12x2-x(x-lnx)2=(x-1)12x+1-lnx(x-lnx)2. ∵當x∈(1,e)時,x-1>0,12x+1-lnx>0, ∴y'>0在x∈[1,e]時成立. 由不等式有解,可得a≥ymin=-12, 即實數(shù)a的取值范圍是-12,+∞. (2)當a=1時,f(x)

13、=lnx. 由m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,得mg(x1)-x1f(x1)>mg(x2)-x2f(x2)恒成立, 設(shè)t(x)=m2x2-xlnx(x>0). 由題意知x1>x2>0,則當x∈(0,+∞)時函數(shù)t(x)單調(diào)遞增, ∴t'(x)=mx-lnx-1≥0恒成立,即m≥lnx+1x恒成立.因此,記h(x)=lnx+1x,得h'(x)=-lnxx2. ∵函數(shù)在區(qū)間(0,1)內(nèi)單調(diào)遞增,在區(qū)間(1,+∞)內(nèi)單調(diào)遞減, ∴函數(shù)h(x)在x=1處取得極大值,并且這個極大值就是函數(shù)h(x)的最大值. 由此可得h(x)max=h(1)=1,故m≥1

14、,結(jié)合已知條件m∈Z,m≤1,可得m=1. 6.(1)解f'(x)=1x-x+1=-x2+x+1x,x∈(0,+∞). 由f'(x)>0,得x>0,-x2+x+1>0,解得01時,F(x)1時,f(x)1滿足題意. 當k>1時,對于x>1,有f(x)

15、(x-1), 則f(x)1滿足題意. 當k<1時,令G(x)=f(x)-k(x-1),x∈(0,+∞), 則有G'(x)=1x-x+1-k=-x2+(1-k)x+1x. 由G'(x)=0得,-x2+(1-k)x+1=0. 解得x1=1-k-(1-k)2+42<0, x2=1-k+(1-k)2+42>1. 當x∈(1,x2)時,G'(x)>0, 故G(x)在區(qū)間[1,x2)內(nèi)單調(diào)遞增. 從而當x∈(1,x2)時,G(x)>G(1)=0, 即f(x)>k(x-1), 綜上,k的取值范圍是(-∞,1). 二、思維提升訓練 7.(1)解由f

16、(x)=x3+ax2+bx+1,得f'(x)=3x2+2ax+b=3x+a32+b-a23. 當x=-a3時,f'(x)有極小值b-a23. 因為f'(x)的極值點是f(x)的零點, 所以f-a3=-a327+a39?ab3+1=0,又a>0,故b=2a29+3a. 因為f(x)有極值,故f'(x)=0有實根, 從而b-a23=19a(27-a3)≤0,即a≥3. 當a=3時,f'(x)>0(x≠-1),故f(x)在R上是增函數(shù),f(x)沒有極值; 當a>3時,f'(x)=0有兩個相異的實根x1=-a-a2-3b3,x2=-a+a2-3b3. 列表如下: x (-∞,x1)

17、 x1 (x1,x2) x2 (x2,+∞) f'(x) + 0 - 0 + f(x) ↗ 極大值 ↘ 極小值 ↗ 故f(x)的極值點是x1,x2. 從而a>3. 因此b=2a29+3a,定義域為(3,+∞). (2)證明由(1)知,ba=2aa9+3aa. 設(shè)g(t)=2t9+3t,則g'(t)=29?3t2=2t2-279t2. 當t∈362,+∞時,g'(t)>0, 從而g(t)在區(qū)間362,+∞內(nèi)單調(diào)遞增. 因為a>3,所以aa>33, 故g(aa)>g(33)=3,即ba>3. 因此b2>3a. (3)解由(1)知,f(x)的

18、極值點是x1,x2,且x1+x2=-23a,x12+x22=4a2-6b9. 從而f(x1)+f(x2)=x13+ax12+bx1+1+x23+ax22+bx2+1=x13(3x12+2ax1+b)+x23(3x22+2ax2+b)+13a(x12+x22)+23b(x1+x2)+2=4a3-6ab27?4ab9+2=0. 記f(x),f'(x)所有極值之和為h(a), 因為f'(x)的極值為b-a23=-19a2+3a, 所以h(a)=-19a2+3a,a>3. 因為h'(a)=-29a-3a2<0, 于是h(a)在區(qū)間(3,+∞)內(nèi)單調(diào)遞減. 因為h(6)=-72,于是h(a

19、)≥h(6),故a≤6. 因此a的取值范圍為(3,6]. 8.(1)解由f(x)=x3-ax-b,可得f'(x)=3x2-a. 下面分兩種情況討論: ①當a≤0時,有f'(x)=3x2-a≥0恒成立. 所以f(x)的單調(diào)遞增區(qū)間為(-∞,+∞). ②當a>0時,令f'(x)=0,解得x=3a3,或x=-3a3. 當x變化時,f'(x),f(x)的變化情況如下表: x   -∞,-3a3   -3a3 -3a3,3a3 3a3   3a3,+∞   f'(x) + 0 - 0 + f(x) 單調(diào) 遞增 極大值 單調(diào)遞減 極小值 單調(diào)遞增

20、所以f(x)的單調(diào)遞減區(qū)間為-3a3,3a3,單調(diào)遞增區(qū)間為-∞,-3a3,3a3,+∞. (2)證明因為f(x)存在極值點,所以由(1)知a>0,且x0≠0.由題意,得f'(x0)=3x02-a=0,即x02=a3,進而f(x0)=x03-ax0-b=-2a3x0-b. 又f(-2x0)=-8x03+2ax0-b=-8a3x0+2ax0-b=-2a3x0-b=f(x0),且-2x0≠x0,由題意及(1)知,存在唯一實數(shù)x1滿足f(x1)=f(x0),且x1≠x0,因此x1=-2x0. 所以x1+2x0=0. (3)證明設(shè)g(x)在區(qū)間[-1,1]上的最大值為M,max{x,y}表示x

21、,y兩數(shù)的最大值.下面分三種情況討論: ①當a≥3時,-3a3≤-1<1≤3a3,由(1)知,f(x)在區(qū)間[-1,1]上單調(diào)遞減,所以f(x)在區(qū)間[-1,1]上的取值范圍為[f(1),f(-1)],因此M=max{|f(1)|,|f(-1)|}=max{|1-a-b|,|-1+a-b|}=max{|a-1+b|,|a-1-b|}=a-1+b,b≥0,a-1-b,b<0. 所以M=a-1+|b|≥2. ②當34≤a<3時,-23a3≤-1<-3a3<3a3<1≤23a3, 由(1)和(2)知f(-1)≥f-23a3=f3a3,f(1)≤f23a3=f-3a3, 所以f(x)在區(qū)間[

22、-1,1]上的取值范圍為f3a3,f-3a3, 因此M=maxf3a3,f-3a3 =max-2a93a-b,2a93a-b =max2a93a+b,2a93a-b =2a93a+|b|≥29×34×3×34=14. ③當0f23a3=f-3a3, 所以f(x)在區(qū)間[-1,1]上的取值范圍為[f(-1),f(1)],因此M=max{|f(-1)|,|f(1)|}=max{|-1+a-b|,|1-a-b|}=max{|1-a+b|,|1-a-b|}=1-a+|b|>14. 綜上所述,當a>0時,g(x)在區(qū)間[-1,1]上的最大值不小于14.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!