(統(tǒng)考版)高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)10 數(shù)列(含解析)(理)-人教版高三數(shù)學(xué)試題

上傳人:文*** 文檔編號:240462824 上傳時間:2024-04-11 格式:DOC 頁數(shù):7 大?。?2KB
收藏 版權(quán)申訴 舉報 下載
(統(tǒng)考版)高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)10 數(shù)列(含解析)(理)-人教版高三數(shù)學(xué)試題_第1頁
第1頁 / 共7頁
(統(tǒng)考版)高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)10 數(shù)列(含解析)(理)-人教版高三數(shù)學(xué)試題_第2頁
第2頁 / 共7頁
(統(tǒng)考版)高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)10 數(shù)列(含解析)(理)-人教版高三數(shù)學(xué)試題_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(統(tǒng)考版)高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)10 數(shù)列(含解析)(理)-人教版高三數(shù)學(xué)試題》由會員分享,可在線閱讀,更多相關(guān)《(統(tǒng)考版)高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)10 數(shù)列(含解析)(理)-人教版高三數(shù)學(xué)試題(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題限時集訓(xùn)(十) 數(shù)列 1.(2018·全國卷Ⅱ)記Sn為等差數(shù)列{an}的前n項和,已知a1=-7,S3=-15. (1)求{an}的通項公式; (2)求Sn,并求Sn的最小值. [解] (1)設(shè){an}的公差為d,由題意得3a1+3d=-15. 由a1=-7得d=2.所以{an}的通項公式為an=2n-9. (2)由(1)得Sn=n2-8n=(n-4)2-16. 所以當n=4時,Sn取得最小值,最小值為-16. 2.(2020·全國卷Ⅰ)設(shè){an}是公比不為1的等比數(shù)列,a1為a2,a3的等差中項. (1)求{an}的公比; (2)若a1=1,求數(shù)列{nan}的前

2、n項和. [解] (1)設(shè){an}的公比為q,由題設(shè)得2a1=a2+a3,即2a1=a1q+a1q2. 所以q2+q-2=0,解得q=1(舍去)或q=-2. 故{an}的公比為-2. (2)記Sn為{nan}的前n項和.由(1)及題設(shè)可得, an=(-2)n-1. 所以Sn=1+2×(-2)+…+n×(-2)n-1, -2Sn=-2+2×(-2)2+…+(n-1)×(-2)n-1+n×(-2)n. 可得3Sn=1+(-2)+(-2)2+…+(-2)n-1-n×(-2)n=-n×(-2)n. 所以Sn=-. 3.(2019·全國卷Ⅱ)已知數(shù)列{an}和{bn}滿足a1=1,b

3、1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4. (1)證明:{an+bn}是等比數(shù)列,{an-bn}是等差數(shù)列; (2)求{an}和{bn}的通項公式. [解] (1)證明:由題設(shè)得4(an+1+bn+1)=2(an+bn),即an+1+bn+1=(an+bn). 又因為a1+b1=1,所以{an+bn}是首項為1,公比為的等比數(shù)列. 由題設(shè)得4(an+1-bn+1)=4(an-bn)+8,即an+1-bn+1=an-bn+2. 又因為a1-b1=1,所以{an-bn}是首項為1,公差為2的等差數(shù)列. (2)由(1)知,an+bn=,an-bn=2n-1.

4、 所以an=[(an+bn)+(an-bn)]=+n-, bn=[(an+bn)-(an-bn)]=-n+. 4.(2016·全國卷Ⅱ)Sn為等差數(shù)列{an}的前n項和,且a1=1,S7=28.記bn=[lg an],其中[x]表示不超過x的最大整數(shù),如[0.9]=0,[lg 99]=1. (1)求b1,b11,b101; (2)求數(shù)列{bn}的前1 000項和. [解] (1)設(shè){an}的公差為d,據(jù)已知有7+21d=28,解得d=1. 所以{an}的通項公式為an=n. b1=[lg 1]=0,b11=[lg 11]=1,b101=[lg 101]=2. (2)因為bn=

5、 所以數(shù)列{bn}的前1 000項和為1×90+2×900+3×1=1 893. 1.(2020·安陽模擬)已知等差數(shù)列{an}的前n項和為Sn,正項等比數(shù)列{bn}的前n項和為Tn.若a1=b1=3,a2+b2=14,a3+b3=34. (1)求數(shù)列{an}與{bn}的通項公式; (2)求數(shù)列{an+bn}的前n項和. [解] (1)設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q(q>0), 由a1=b1=3,a2+b2=14,a3+b3=34, 得a2+b2=3+d+3q=14, a3+b3=3+2d+3q2=34, 解得:d=2,q=3. ∴an=3+2(

6、n-1)=2n+1,bn=3n. (2)∵an+bn=(2n+1)+3n, ∴{an+bn}的前n項和為 (a1+a2+…+an)+(b1+b2+…+bn) =(3+5+…+2n+1)+(3+32+…+3n) =+=n(n+2)+. 2.(2020·濰坊模擬)已知等比數(shù)列{an}的首項a1=2,且a2,a3+2,a4成等差數(shù)列. (1)求{an}的通項公式; (2)若bn=log2an,求數(shù)列的前n項和Tn. [解] (1)等比數(shù)列{an}的首項a1=2,公比設(shè)為q, a2,a3+2,a4成等差數(shù)列,可得a2+a4=2(a3+2), 即有2q+2q3=2(2q2+2),解

7、得q=2. 則an=a1qn-1=2n. (2)bn=log2an=log22n = n, 則==-, 前n項和Tn=1-+-+…+-=1-=. 3.(2020·吉林二模)已知等差數(shù)列{an}的前n項和為Sn,且a2=-3,S6=0. (1)求數(shù)列{an}的通項公式; (2)求使不等式Sn>an成立的n的最小值. [解] (1)設(shè)等差數(shù)列{an}的公差為d, ∵a2=-3,S6=0, ∴a1+d=-3,6a1+15d=0. 解得a1=-5,d=2. ∴an=-5+2(n-1)=2n-7. (2)不等式Sn>an,即-5n+×2>2n-7,等價于(n-1)(n-7)>0

8、,解得n>7. ∴使不等式Sn>an成立的n的最小值為8. 4.(2020·淄博模擬)已知數(shù)列{an}滿足a1=,且an=+(n≥2,n∈N*). (1)求證:數(shù)列{2nan}是等差數(shù)列,并求出數(shù)列{an}的通項公式; (2)求數(shù)列{an}的前n項和Sn. [解] (1)證明:當n≥2時,由an=+, 兩邊同時乘以2n,可得2nan=2n-1an-1+2, 即2nan-2n-1an-1=2(n≥2). ∵21a1=2×=3, ∴數(shù)列{2nan}是以3為首項,2為公差的等差數(shù)列. ∴2nan=3+2(n-1)=2n+1, ∴an=,n∈N*. (2)由(1)可知, Sn

9、=a1+a2+…+an=+++…++, Sn=++…++, 兩式相減,可得: Sn=+++…+- =+- =-, ∴Sn=5-. 1.已知數(shù)列{an}的前n項和Sn=n2-2kn(k∈N*),Sn的最小值為-9. (1)確定k的值,并求數(shù)列{an}的通項公式; (2)設(shè)bn=(-1)n·an,求數(shù)列{bn}的前2n+1項和T2n+1. [解] (1)由已知得Sn=n2-2kn=(n-k)2-k2, 因為k∈N*,則當n=k時,(Sn)min=-k2=-9,故k=3. 所以Sn=n2-6n. 因為Sn-1=(n-1)2-6(n-1)(n≥2), 所以an=Sn-S

10、n-1=(n2-6n)-[(n-1)2-6(n-1)]=2n-7(n≥2). 當n=1時,S1=a1=-5,滿足an=2n-7, 綜上,an=2n-7. (2)依題意,得bn=(-1)n·an=(-1)n(2n-7), 則T2n+1=5-3+1+1-3+5-…+(-1)2n(4n-7)+(-1)2n+1[2(2n+1)-7] =5-2n. 2.已知數(shù)列{an},{bn}滿足a1=1,b1=,2an+1=an+bn,2bn+1=an+bn. (1)證明:數(shù)列{an+bn},{an-bn}為等比數(shù)列; (2)記Sn為數(shù)列{an}的前n項和,證明:Sn<. [解] (1)依題意

11、得兩式相加得:an+1+bn+1=(an+bn), ∴{an+bn}為等比數(shù)列, 兩式相減得:an+1-bn+1=(an-bn), ∴{an-bn}為等比數(shù)列. (2)由(1)可得:an+bn=①, an-bn=②, 兩式相加得:an=+, Sn=+<+=. 3.設(shè)數(shù)列{an}的前n項和為Sn,已知S1=2,an+1=Sn+2. (1)證明:{an}為等比數(shù)列; (2)記bn=log2an,數(shù)列的前n項和為Tn,若Tn≥10恒成立,求λ的取值范圍. [解] (1)證明由已知,得a1=S1=2,a2=S1+2=4, 當n≥2時,an=Sn-1+2, 所以an+1-an

12、=(Sn+2)-(Sn-1+2)=an, 所以an+1=2an(n≥2). 又a2=2a1,所以=2(n∈N*), 所以{an}是首項為2,公比為2的等比數(shù)列. (2)由(1)可得an=2n,所以bn=n. 則==λ, Tn=λ=λ, 因為Tn≥10,所以≥10,從而λ≥, 因為=10≤20, 所以λ的取值范圍為[20,+∞). 4.已知數(shù)列{an}的各項都為正數(shù),a1=2,且=+1. (1)求數(shù)列{an}的通項公式; (2)設(shè)bn=[lg(log2an)],其中[x]表示不超過x的最大整數(shù),如[0.9]=0,[lg 99]=1,求數(shù)列{bn}的前2 020項和. [解] (1)由題意,=+1, 即a-an+1an-2a=0, 整理,得(an+1+an)(an+1-2an)=0. ∵數(shù)列{an}的各項都為正數(shù), ∴an+1-2an=0,即an+1=2an. ∴數(shù)列{an}是以2為首項,2為公比的等比數(shù)列, ∴an=2n. (2)由(1)知,bn=[lg(log2an)]=[lg(log22n)] =[lg n], 故bn= n∈N*. ∴數(shù)列{bn}的前2 020項的和為1×90+2×900+3×1 021=4 953.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!