高中數學 第一章 導數及其應用 1.5.3 微積分基本定理(一)課件 蘇教版選修2-2.ppt
《高中數學 第一章 導數及其應用 1.5.3 微積分基本定理(一)課件 蘇教版選修2-2.ppt》由會員分享,可在線閱讀,更多相關《高中數學 第一章 導數及其應用 1.5.3 微積分基本定理(一)課件 蘇教版選修2-2.ppt(23頁珍藏版)》請在裝配圖網上搜索。
1.5.3 微積分基本定理(一),第 1章 1.5 定積分,1.了解導數和微積分的關系. 2.掌握微積分基本定理. 3.會用微積分基本定理求一些函數的定積分.,,學習目標,,,欄目索引,,,知識梳理 自主學習,題型探究 重點突破,當堂檢測 自查自糾,知識梳理 自主學習,,答案,知識點一 導數與定積分的關系 等于函數f(x)的任意一個原函數F(x)(F′(x)=f(x))在積分區(qū)間[a,b]上的改變量 . 以路程和速度之間的關系為例解釋如下: 如果物體運動的速度函數為v=v(t),那么在時間區(qū)間[a,b]內物體的位移s可以用定積分表示為s= .另一方面,如果已知該變速直線運動的路程函數為s=s(t),那么在時間區(qū)間[a,b]內物體的位移為 ,所以有 =s(b)-s(a).由于s′(t)=v(t),即s(t)為v(t)的原函數,這就是說,定積分 等于被積函數v(t)的原函數s(t)在區(qū)間[a,b]上的增量 .,F(b)-F(a),s(b)-s(a),s(b)-s(a),,思考 函數f(x)與其一個原函數的關系: (1)若f(x)=C(C為常數),則F(x)= ; (2)若f(x)=xn(n≠-1),則F(x)= ; (3)若f(x)= ,則F(x)= ; (4)若f(x)=ex,則F(x)= ; (5)若f(x)=ax,則F(x)= (a0且a≠1); (6)若f(x)=sin x,則F(x)= ; (7)若f(x)=cos x,則F(x)= .,答案,Cx,ln x(x0),ex,-cos x,sin x,,知識點二 微積分基本定理 一般地,如果f(x)是區(qū)間[a,b]上的連續(xù)函數,并且 ,那么 = . 思考 (1)函數f(x)的原函數F(x)是否唯一? 答案 不唯一. (2)用微積分基本定理計算簡單定積分的步驟是什么? 答案 ①把被積函數f(x)變?yōu)閮绾瘮?、正弦函數、余弦函數、指數函數等初等函數與常數的和或差; ②用求導公式找到F(x),使得F′(x)=f(x); ③利用微積分基本定理求出定積分的值.,F′(x)=f(x),F(b)-F(a),答案,返回,題型探究 重點突破,,解析答案,題型一 求簡單函數的定積分 例1 計算下列定積分.,解 因為(x2+3x)′=2x+3,,,解析答案,反思與感悟,,反思與感悟,(1)用微積分基本定理求定積分的步驟: ①求f(x)的一個原函數F(x); ②計算F(b)-F(a). (2)注意事項: ①有時需先化簡,再求積分; ②若F(x)是f(x)的原函數,則F(x)+C(C為常數)也是f(x)的原函數.隨著常數C的變化,f(x)有無窮多個原函數,這是因為F′(x)=f(x),則[F(x)+C]′=F′(x)=f(x)的緣故. =F(b)-F(a)= ,所以利用f(x)的原函數計算定積分時,一般只寫一個最簡單的原函數,不用再加任意常數C了.,,解析答案,跟蹤訓練1 求下列函數的定積分.,,解析答案,,解析答案,題型二 求分段函數的定積分,解 由定積分的性質知:,反思與感悟,,反思與感悟,(1)分段函數在區(qū)間[a,b]上的定積分可分成幾個定積分的和的形式. (2)分段的標準是確定每一段上的函數表達式,即按照原函數分段的情況分就可以.,,解析答案,跟蹤訓練2 求下列函數的定積分.,,解析答案,(2),解,,解析答案,題型三 定積分的簡單應用,反思與感悟,,反思與感悟,定積分的應用體現(xiàn)了積分與函數的內在聯(lián)系,可以通過積分構造新的函數,進而對這一函數進行性質、最值等方面的考查,解題過程中注意體會轉化思想的應用.,,跟蹤訓練3 已知f(x)=ax2+bx+c(a≠0),且f(-1)=2,f′(0)=0, =-2,求a、b、c的值.,解 由f(-1)=2,得a-b+c=2. ① 又f′(x)=2ax+b,∴f′(0)=b=0, ②,由①②③式得a=6,b=0,c=-4.,解析答案,返回,,當堂檢測,1,2,3,4,解析答案,1. .,,解析 結合微積分基本定理,得,,,,解析答案,③,1,2,3,4,,解析答案,1,2,3,4,,解析答案,1,2,3,4,,課堂小結,,返回,1.求定積分的一些常用技巧 (1)對被積函數,要先化簡,再求積分. (2)若被積函數是分段函數,依據定積分“對區(qū)間的可加性”,分段積分再求和. (3)對于含有絕對值符號的被積函數,要去掉絕對值符號才能積分. 2.由于定積分的值可取正值,也可取負值,還可以取0,而面積是正值,因此不要把面積理解為被積函數對應圖形在某幾個區(qū)間上的定積分之和,而是在x軸下方的圖形面積要取定積分的相反數.,- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 高中數學 第一章 導數及其應用 1.5.3 微積分基本定理一課件 蘇教版選修2-2 導數 及其 應用 1.5 微積分 基本 定理 課件 蘇教版 選修
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.kudomayuko.com/p-2436945.html