高中數(shù)學(xué) 第三章 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 3.1.1 數(shù)系的擴(kuò)充和復(fù)數(shù)的概念課件 新人教版選修2-2.ppt
《高中數(shù)學(xué) 第三章 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 3.1.1 數(shù)系的擴(kuò)充和復(fù)數(shù)的概念課件 新人教版選修2-2.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第三章 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 3.1.1 數(shù)系的擴(kuò)充和復(fù)數(shù)的概念課件 新人教版選修2-2.ppt(28頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
3.1.1 數(shù)系的擴(kuò)充和復(fù)數(shù)的概念,第三章 3.1 數(shù)系的擴(kuò)充和復(fù)數(shù)的概念,1.了解引進(jìn)復(fù)數(shù)的必要性,理解并掌握虛數(shù)單位i. 2.理解復(fù)數(shù)的基本概念及復(fù)數(shù)相等的充要條件.,,學(xué)習(xí)目標(biāo),,,欄目索引,,,知識(shí)梳理 自主學(xué)習(xí),題型探究 重點(diǎn)突破,當(dāng)堂檢測(cè) 自查自糾,知識(shí)梳理 自主學(xué)習(xí),知識(shí)點(diǎn)一 復(fù)數(shù)的引入,,答案,在實(shí)數(shù)范圍內(nèi),方程x2+1=0無(wú)解.為了解決x2+1=0這樣的方程在實(shí)數(shù)系中無(wú)解的問(wèn)題,我們?cè)O(shè)想引入一個(gè)新數(shù)i,使i是方程x2+1=0的根,即使ii=-1. 把這個(gè)新數(shù)i添加到實(shí)數(shù)集中去,得到一個(gè)新數(shù)集.把實(shí)數(shù)a與實(shí)數(shù)b和i相乘的結(jié)果相加,結(jié)果記作a+bi(a,b∈R),這些數(shù)都應(yīng)在新數(shù)集中.再注意到實(shí)數(shù)a和數(shù)i,也可以看作是a+bi(a,b∈R)這樣的數(shù)的特殊形式,所以實(shí)數(shù)系經(jīng)過(guò)擴(kuò)充后得到的新數(shù)集應(yīng)該是C={a+bi|a,b∈R},稱i為 .,虛數(shù)單位,,答案,思考 (1)分別在有理數(shù)集、實(shí)數(shù)集、復(fù)數(shù)集中分解因式x4-25.,,(2)虛數(shù)單位i有哪些性質(zhì)?,,答案,答案 虛數(shù)單位i有如下幾個(gè)性質(zhì): ①i的平方等于-1,即i2=-1; ②實(shí)數(shù)與i可進(jìn)行四則運(yùn)算,并且原有的加法、乘法運(yùn)算律仍然成立; ③i的乘方:i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i(n∈N*).,知識(shí)點(diǎn)二 復(fù)數(shù)的概念、分類,,答案,1.復(fù)數(shù)的有關(guān)概念 (1)復(fù)數(shù)的概念:形如a+bi的數(shù)叫做復(fù)數(shù),其中a,b∈R,i叫做 .a叫做復(fù)數(shù)的 ,b叫做復(fù)數(shù)的 . (2)復(fù)數(shù)的表示方法:復(fù)數(shù)通常用字母 表示,即 . (3)復(fù)數(shù)集定義: 所構(gòu)成的集合叫做復(fù)數(shù)集.通常用大寫字母C表示. 2.復(fù)數(shù)的分類及包含關(guān)系,虛數(shù)單位,實(shí)部,虛部,z,z=a+bi,全體復(fù)數(shù),(2)集合表示:,,答案,思考 (1)兩個(gè)復(fù)數(shù)一定能比較大小嗎?,答案 不一定,只有當(dāng)這兩個(gè)復(fù)數(shù)是實(shí)數(shù)時(shí),才能比較大小.,(2)復(fù)數(shù)a+bi的實(shí)部是a,虛部是b嗎?,答案 不一定,對(duì)于復(fù)數(shù)z=a+bi(a,b∈R),實(shí)部才是a,虛部才是b.,知識(shí)點(diǎn)三 復(fù)數(shù)相等,,復(fù)數(shù)相等的充要條件 設(shè)a,b,c,d都是實(shí)數(shù),那么a+bi=c+di? .即它們的實(shí)部與虛部分別對(duì)應(yīng)相等.,a=c且b=d,思考 (1)若復(fù)數(shù)z=a+bi(a,b∈R).z=0,則a+b的值為多少?,答案 0;,(2)若復(fù)數(shù)z1,z2為z1=3+ai(a∈R),z2=b+i(b∈R),且z1=z2,則a+b的值為多少?,答案 4.,返回,答案,題型探究 重點(diǎn)突破,題型一 復(fù)數(shù)的概念,,解析答案,例1 寫出下列復(fù)數(shù)的實(shí)部和虛部,并判斷它們是實(shí)數(shù),虛數(shù),還是純虛數(shù). ①2+3i;,解 實(shí)部為2,虛部為3,是虛數(shù);,,解析答案,反思與感悟,④π;,解 實(shí)部為π,虛部為0,是實(shí)數(shù);,⑥0.,解 實(shí)部為0,虛部為0,是實(shí)數(shù).,,反思與感悟,復(fù)數(shù)a+bi(a,b∈R)中,實(shí)數(shù)a和b分別叫做復(fù)數(shù)的實(shí)部和虛部.特別注意,b為復(fù)數(shù)的虛部而不是虛部的系數(shù),b連同它的符號(hào)叫做復(fù)數(shù)的虛部.,跟蹤訓(xùn)練1 下列命題中,正確命題的個(gè)數(shù)是( ) ①若x,y∈C,則x+yi=1+i的充要條件是x=y(tǒng)=1; ②若a,b∈R且a>b,則a+i>b+i; ③若x2+y2=0,則x=y(tǒng)=0. A.0 B.1 C.2 D.3,,解析答案,A,解析 ①由于x,y∈C,所以x+yi不一定是復(fù)數(shù)的代數(shù)形式,不符合復(fù)數(shù)相等的充要條件, 所以①是假命題.②由于兩個(gè)虛數(shù)不能比較大小, 所以②是假命題.③當(dāng)x=1,y=i時(shí),x2+y2=0成立, 所以③是假命題.故選A.,題型二 復(fù)數(shù)的分類,,解析答案,,解 因?yàn)閦是虛數(shù),故其虛部log2(5-m)≠0,,解得1<m<5,且m≠4.,,,(2)若z是純虛數(shù),求m的值.,解 因?yàn)閦是純虛數(shù),故其實(shí)部 (m-1)=0,虛部log2(5-m)≠0,,解析答案,解得m=2.,反思與感悟,,將復(fù)數(shù)化成代數(shù)形式z=a+bi(a,b∈R),根據(jù)復(fù)數(shù)的分類:當(dāng)b=0時(shí),z為實(shí)數(shù);當(dāng)b≠0時(shí),z為虛數(shù);特別地,當(dāng)b≠0,a=0時(shí),z為純虛數(shù),由此解決有關(guān)復(fù)數(shù)分類的參數(shù)求解問(wèn)題.,反思與感悟,,解析答案,跟蹤訓(xùn)練2 實(shí)數(shù)k為何值時(shí),復(fù)數(shù)z=(1+i)k2-(3+5i)k-2(2+3i)分別是(1)實(shí)數(shù);(2)虛數(shù);(3)純虛數(shù);(4)零.,解 由z=(1+i)k2-(3+5i)k-2(2+3i)=(k2-3k-4)+(k2-5k-6)i. (1)當(dāng)k2-5k-6=0時(shí),z∈R,即k=6或k=-1. (2)當(dāng)k2-5k-6≠0時(shí),z是虛數(shù),即k≠6且k≠-1.,題型三 兩個(gè)復(fù)數(shù)相等,,解析答案,例3 (1)已知x2-y2+2xyi=2i,求實(shí)數(shù)x,y的值.,解 ∵x2-y2+2xyi=2i,,,解析答案,反思與感悟,,,,兩個(gè)復(fù)數(shù)相等,首先要分清兩復(fù)數(shù)的實(shí)部與虛部,然后利用兩個(gè)復(fù)數(shù)相等的充要條件可得到兩個(gè)方程,從而可以確定兩個(gè)獨(dú)立參數(shù).,反思與感悟,,解析答案,,返回,,當(dāng)堂檢測(cè),1,2,3,4,5,1.若集合A={i,i2,i3,i4}(i是虛數(shù)單位),B={1,-1},則A∩B等于( ) A.{-1} B.{1} C.{1,-1} D. ?,解析 因?yàn)閕2=-1,i3=-i,i4=1, 所以A={i,-1,-i,1},又B={1,-1}, 故A∩B={1,-1}.,C,解析答案,1,2,3,4,5,,2.已知復(fù)數(shù)z=a2-(2-b)i的實(shí)部和虛部分別是2和3,則實(shí)數(shù)a,b的值分別是( ),C,解析答案,1,2,3,4,5,,,答案,C,1,2,3,4,5,,解析答案,4.已知M={2,m2-2m+(m2+m-2)i},N={-1,2,4i},若M∪N=N,則實(shí)數(shù)m的值為 .,1或2,解析 ∵M(jìn)∪N=N, ∴M?N, ∴m2-2m+(m2+m-2)i=-1或m2-2m+(m2+m-2)i=4i.,解得m=1或m=2. 故實(shí)數(shù)m的值是1或2.,1,2,3,4,5,,解析答案,5.設(shè)i為虛數(shù)單位,若關(guān)于x的方程x2-(2+i)x+1+mi=0(m∈R)有一實(shí)根為n,則m= .,1,解析 關(guān)于x的方程x2-(2+i)x+1+mi=0(m∈R)有一實(shí)根為n, 可得n2-(2+i)n+1+mi=0.,,課堂小結(jié),,返回,1.復(fù)數(shù)的代數(shù)形式z=a+bi(a,b∈R)是解決問(wèn)題的基礎(chǔ),明確其實(shí)部、虛部. 2.根據(jù)復(fù)數(shù)為實(shí)數(shù)、虛數(shù)、純虛數(shù),復(fù)數(shù)相等的充要條件,可將問(wèn)題實(shí)數(shù)化.,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學(xué) 第三章 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 3.1.1 數(shù)系的擴(kuò)充和復(fù)數(shù)的概念課件 新人教版選修2-2 第三 擴(kuò)充 復(fù)數(shù) 引入 3.1 概念 課件 新人 選修
鏈接地址:http://m.kudomayuko.com/p-2437537.html