高考數(shù)學(xué)大一輪復(fù)習(xí) 第7章 第7節(jié) 立體幾何中的向量方法課件 理.ppt
《高考數(shù)學(xué)大一輪復(fù)習(xí) 第7章 第7節(jié) 立體幾何中的向量方法課件 理.ppt》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)大一輪復(fù)習(xí) 第7章 第7節(jié) 立體幾何中的向量方法課件 理.ppt(83頁珍藏版)》請在裝配圖網(wǎng)上搜索。
,第七章 立體幾何,第七節(jié) 立體幾何中的向量方法,,[考情展望] 1.考查利用空間向量判斷、證明空間中的線、面位置關(guān)系.2.考查利用向量求空間角的大小.3.以解答題為主要考查形式.,固本源 練基礎(chǔ) 理清教材,(1)①平行 (2)①垂直,[基礎(chǔ)梳理],2.空間位置關(guān)系的向量表示 n1=kn2 n1n2=0 nm=0 n=km n=km nm=0,3.空間角的向量求法 (1)異面直線所成角的求法. 設(shè)a,b分別是兩異面直線l1,l2的方向向量.,(2)直線和平面所成角的求法. 如圖所示,設(shè)直線l的方向向量為e,平面α的法向量為n,直線l與平面α所成的角為φ,兩向量e與n的夾角為θ,則有sin φ=|cos θ|=________.直線與平面所成角的范圍為[0,90].,,(3)二面角的求法. ①如圖①,AB,CD是二面角α-l-β的兩個半平面內(nèi)與棱l垂直的直線,則二面角的大小θ=________.,,②如圖②,圖③,n1,n2分別是二面角α-l-β的兩個半平面α,β的法向量,則二面角的大小θ滿足cos θ=__________或________.,,,[基礎(chǔ)訓(xùn)練],答案:1.(1)√ (2) (3) (4)√,,,4.長方體ABCD-A1B1C1D1中,AB=AA1=2,AD=1,E為CC1的中點(diǎn),則異面直線BC1與AE所成角的余弦值為________.,,,5.(2015上海普陀區(qū)一模)正四棱錐S-ABCD中,O為頂點(diǎn)S在底面上的射影,P為側(cè)棱SD的中點(diǎn),且SO=OD,則直線BC與平面PAC所成的角是________.,,答案:30,精研析 巧運(yùn)用 全面攻克,[調(diào)研1] 如圖所示,在四棱錐P-ABCD中,PC⊥平面ABCD,PC=2,在四邊形ABCD中,∠B=∠C=90,AB=4,CD=1,點(diǎn)M在PB上,PB=4PM,PB與平面ABCD成30的角. (1)求證:CM∥平面PAD; (2)求證:平面PAB⊥平面PAD.,┃考點(diǎn)一┃ 利用空間向量證明平行、垂直 ——師生共研型,,,,,1.恰當(dāng)建立坐標(biāo)系,準(zhǔn)確表示各點(diǎn)與相關(guān)向量的坐標(biāo),是運(yùn)用向量法證明平行和垂直的關(guān)鍵. 2.證明直線與平面平行,只須證明直線的方向向量與平面的法向量的數(shù)量積為零,或證直線的方向向量與平面內(nèi)的不共線的兩個向量共面,然后說明直線在平面外即可.這樣就把幾何的證明問題轉(zhuǎn)化為向量運(yùn)算. 3.證明直線與直線垂直,只需要證明兩條直線的方向向量垂直,而直線與平面垂直,平面與平面垂直可轉(zhuǎn)化為證明直線與直線垂直.,名師歸納類題練熟,如圖所示,已知直三棱柱ABC-A1B1C1中,△ABC為等腰三角形,∠BAC=90,且AB=AA1,D,E,F(xiàn)分別為B1A,C1C,BC的中點(diǎn).求證: (1)DE∥平面ABC; (2)B1F⊥平面AEF.,[好題研習(xí)],┃考點(diǎn)二┃ 利用空間向量求線線角和線面角 ——師生共研型,[解析] (1)證明:由該四面體的三視圖,可知 BD⊥DC,BD⊥AD,AD⊥DC, BD=DC=2,AD=1. 由題設(shè),BC∥平面EFGH, 平面EFGH∩平面BDC=FG, 平面EFGH∩平面ABC=EH, ∴BC∥FG,BC∥EH,∴FG∥EH. 同理EF∥AD,HG∥AD,∴EF∥HG, ∴四邊形EFGH是平行四邊形. 又∵AD⊥DC,AD⊥BD,∴AD⊥平面BDC. ∴AD⊥BC,∴EF⊥FG, ∴四邊形EFGH是矩形.,,,,,名師歸納類題練熟,(2015臨沂一模)在三棱柱ABC-A1B1C1中,四邊形AA1B1B為菱形,AA1=4,AC=3,BC=B1C=5,∠ABB1=60,D為AB的中點(diǎn). (1)求證:B1D⊥B1C1; (2)求直線AA1與平面CB1D所成角的正弦值.,[好題研習(xí)],,解:(1)證明:∵四邊形AA1B1B為菱形,∴AB=AA1=4. 又∵AC=3,BC=B1C=5,∴BC2=AB2+AC2, ∴∠BAC=90,即AC⊥AB. 連接AB1,∵∠ABB1=60,∴AB1=AB=4. 在△AB1C中,由B1C2=AB+AC2, 得∠CAB1=90,∴AC⊥AB1. ∵AB∩AB1=A,∴AC⊥平面AA1B1B. 又∵B1D?平面AA1B1B,∴AC⊥B1D. 又D為AB的中點(diǎn),∴B1D⊥AB. ∵AB∩AC=A,∴B1D⊥平面ABC. ∵BC?平面ABC,∴B1D⊥BC, 又B1C1∥BC,∴B1D⊥B1C1.,,[考情]二面角是高考的重點(diǎn),也是考查熱點(diǎn),二面角可以將面面位置關(guān)系、線面位置關(guān)系、線線位置關(guān)系很好地融合在一起考查,且命題形式多樣化.無論是選擇題、填空題還是解答題都有關(guān)于這個考點(diǎn)常見的命題形式.,┃考點(diǎn)三┃ 利用空間向量求二面角——高頻考點(diǎn)型,因?yàn)锳O⊥BD,所以NH⊥BD. 因?yàn)镸N⊥NP,所以BD⊥NP. 因?yàn)镹H,NP?平面NHP,且NH∩NP=N, 所以BD⊥平面NHP. 又因?yàn)镠P?平面NHP,所以BD⊥HP. 又OC⊥BD,HP?平面BCD,OC?平面BCD, 所以HP∥OC. 因?yàn)镠為BO中點(diǎn),故P為BC中點(diǎn).,提醒:求二面角最常用的方法就是分別求出二面角的兩個平面所在的法向量,然后通過兩個平面的法向量的夾角得到二面角的大小,但要注意結(jié)合實(shí)際圖形判斷所求角是銳角還是鈍角.,熱點(diǎn)破解通關(guān)預(yù)練,[好題研習(xí)],[考情]探索存在性問題在立體幾何綜合考查中是??嫉拿}角度,也是考生感覺較難,失分較多的問題,歸納起來立體幾何中常見的探索性問題有: (1)探索性問題與空間角相結(jié)合; (2)探索性問題與平行或垂直相結(jié)合; (3)探索性問題與空間距離相結(jié)合.,┃考點(diǎn)四┃ 利用空間向量解決探索性問題 ——多維探究型,,,,,[解析] (1) 證明:因?yàn)锳A1C1C為正方形, 所以AA1⊥AC. 因?yàn)槠矫鍭BC⊥平面AA1C1C, 且AA1垂直于這兩個平面的交線AC, 所以AA1⊥平面ABC. (2)解:由(1) 知AA1⊥AC, AA1⊥AB.由題知AB=3,BC=5,AC=4,所以AB⊥AC. 如圖, 以A為原點(diǎn)建立空間直角坐標(biāo)系A(chǔ)-xyz, 則B(0,3,0), A1(0,0,4), B1(0,3,4), C1(4,0,4).,,視點(diǎn)三:探索性問題與空間距離相結(jié)合 3.(2015淄博模擬)在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠ABC=60,AB=2CB=2.在梯形ACEF中,EF∥AC,且AC=2EF,EC⊥平面ABCD. (1)求證:BC⊥AF; (2)若二面角D-AF-C的大小為45,求CE的長.,,[解析] (1)證明:在△ABC中,AC2=AB2+BC2-2ABBCcos 60=3, 所以AB2=AC2+BC2, 由勾股定理的逆定理,知∠ACB=90,所以BC⊥AC. 又因?yàn)镋C⊥平面ABCD,BC?平面ABCD,所以BC⊥EC. 又因?yàn)锳C∩EC=C,所以BC⊥平面ACEF, 又AF?平面ACEF, 所以BC⊥AF.,學(xué)方法 提能力 啟智培優(yōu),[規(guī)范答題] 向量法求空間角,[審題視角] (1)轉(zhuǎn)化為證明C1M∥AD1. (2)解法一是通過建立空間直角坐標(biāo)系,用向量法求解. 解法二是作出二面角的平面角,通過解三角形求解. [滿分展示] (1)證明:因?yàn)樗倪呅蜛BCD是等腰梯形, 且AB=2CD, 所以AB∥DC,又由M是AB的中點(diǎn), 因此CD∥MA且CD=MA.(2分),,連接AD1,在四棱柱ABCD-A1B1C1D1中,因?yàn)镃D∥C1D1,CD=C1D1,可得C1D1∥MA,C1D1=MA,,所以四邊形AMC1D1為平行四邊形,因此C1M∥D1A. 又C1M?平面A1ADD1,D1A?平面A1ADD1, 所以C1M∥平面A1ADD1.(4分),解法二:由(1),知平面D1C1M∩平面ABCD=AB,過C向AB引垂線交AB于N,連接D1N.(6分),[答題模板] 利用向量求空間角的步驟: 第一步:建立空間直角坐標(biāo)系. 第二步:確定點(diǎn)的坐標(biāo). 第三步:求向量(直線的方向向量、平面的法向量)坐標(biāo). 第四步:計算向量的夾角(或函數(shù)值). 第五步:將向量夾角轉(zhuǎn)化為所求的空間角. 第六步:反思回顧,查看關(guān)鍵點(diǎn)、易錯點(diǎn)和答題規(guī)范.,[溫馨提醒] (1)利用向量求角是高考的熱點(diǎn),幾乎每年必考,主要是突出向量的工具性作用. (2)本題易錯點(diǎn)是在建立坐標(biāo)系時不能明確指出坐標(biāo)原點(diǎn)和坐標(biāo)軸,導(dǎo)致建系不規(guī)范. (3)將向量的夾角轉(zhuǎn)化成空間角時,要注意根據(jù)角的概念和圖形特征進(jìn)行轉(zhuǎn)化,否則易錯.,,[名師指導(dǎo)],- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
14.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)大一輪復(fù)習(xí) 第7章 第7節(jié) 立體幾何中的向量方法課件 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 立體幾何 中的 向量 方法 課件
鏈接地址:http://m.kudomayuko.com/p-2469277.html