2019-2020年高中數(shù)學(xué)3.2《直線的方程》教案新人教必修2.doc
《2019-2020年高中數(shù)學(xué)3.2《直線的方程》教案新人教必修2.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)3.2《直線的方程》教案新人教必修2.doc(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)3.2《直線的方程》教案新人教必修2 一、教學(xué)目標(biāo) 1、知識與技能 (1)理解直線方程的點(diǎn)斜式、斜截式的形式特點(diǎn)和適用范圍; (2)能正確利用直線的點(diǎn)斜式、斜截式公式求直線方程。 (3)體會直線的斜截式方程與一次函數(shù)的關(guān)系. 2、過程與方法 在已知直角坐標(biāo)系內(nèi)確定一條直線的幾何要素——直線上的一點(diǎn)和直線的傾斜角的基礎(chǔ)上,通過師生探討,得出直線的點(diǎn)斜式方程;學(xué)生通過對比理解“截距”與“距離”的區(qū)別。 3、情態(tài)與價(jià)值觀 通過讓學(xué)生體會直線的斜截式方程與一次函數(shù)的關(guān)系,進(jìn)一步培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,滲透數(shù)學(xué)中普遍存在相互聯(lián)系、相互轉(zhuǎn)化等觀點(diǎn),使學(xué)生能用聯(lián)系的觀點(diǎn)看問題。 二、教學(xué)重點(diǎn)、難點(diǎn): (1)重點(diǎn):直線的點(diǎn)斜式方程和斜截式方程。 (2)難點(diǎn):直線的點(diǎn)斜式方程和斜截式方程的應(yīng)用。 三、教學(xué)設(shè)想 問 題 設(shè)計(jì)意圖 師生活動 1、在直線坐標(biāo)系內(nèi)確定一條直線,應(yīng)知道哪些條件? 使學(xué)生在已有知識和經(jīng)驗(yàn)的基礎(chǔ)上,探索新知。 學(xué)生回顧,并回答。然后教師指出,直線的方程,就是直線上任意一點(diǎn)的坐標(biāo)滿足的關(guān)系式。 2、直線經(jīng)過點(diǎn),且斜率為。設(shè)點(diǎn)是直線上的任意一點(diǎn),請建立與之間的關(guān)系。 培養(yǎng)學(xué)生自主探索的能力,并體會直線的方程,就是直線上任意一點(diǎn)的坐標(biāo)滿足的關(guān)系式,從而掌握根據(jù)條件求直線方程的方法。 學(xué)生根據(jù)斜率公式,可以得到,當(dāng)時,,即 (1) 教師對基礎(chǔ)薄弱的學(xué)生給予關(guān)注、引導(dǎo),使每個學(xué)生都能推導(dǎo)出這個方程。 3、(1)過點(diǎn),斜率是的直線上的點(diǎn),其坐標(biāo)都滿足方程(1)嗎? 使學(xué)生了解方程為直線方程必須滿兩個條件。 學(xué)生驗(yàn)證,教師引導(dǎo)。 問 題 設(shè)計(jì)意圖 師生活動 (2)坐標(biāo)滿足方程(1)的點(diǎn)都在經(jīng)過,斜率為的直線上嗎? 使學(xué)生了解方程為直線方程必須滿兩個條件。 學(xué)生驗(yàn)證,教師引導(dǎo)。然后教師指出方程(1)由直線上一定點(diǎn)及其斜率確定,所以叫做直線的點(diǎn)斜式方程,簡稱點(diǎn)斜式(point slope form). 4、直線的點(diǎn)斜式方程能否表示坐標(biāo)平面上的所有直線呢? 使學(xué)生理解直線的點(diǎn)斜式方程的適用范圍。 學(xué)生分組互相討論,然后說明理由。 5、(1)軸所在直線的方程是什么?軸所在直線的方程是什么? (2)經(jīng)過點(diǎn)且平行于軸(即垂直于軸)的直線方程是什么? (3)經(jīng)過點(diǎn)且平行于軸(即垂直于軸)的直線方程是什么? 進(jìn)一步使學(xué)生理解直線的點(diǎn)斜式方程的適用范圍,掌握特殊直線方程的表示形式。 教師學(xué)生引導(dǎo)通過畫圖分析,求得問題的解決。 6、例1的教學(xué)。 學(xué)會運(yùn)用點(diǎn)斜式方程解決問題,清楚用點(diǎn)斜式公式求直線方程必須具備的兩個條件:(1)一個定點(diǎn);(2)有斜率。同時掌握已知直線方程畫直線的方法。 教師引導(dǎo)學(xué)生分析要用點(diǎn)斜式求直線方程應(yīng)已知那些條件?題目那些條件已經(jīng)直接給予,那些條件還有待已去求。在坐標(biāo)平面內(nèi),要畫一條直線可以怎樣去畫。 7、已知直線的斜率為,且與軸的交點(diǎn)為,求直線的方程。 引入斜截式方程,讓學(xué)生懂得斜截式方程源于點(diǎn)斜式方程,是點(diǎn)斜式方程的一種特殊情形。 學(xué)生獨(dú)立求出直線的方程: (2) 再此基礎(chǔ)上,教師給出截距的概念,引導(dǎo)學(xué)生分析方程(2)由哪兩個條件確定,讓學(xué)生理解斜截式方程概念的內(nèi)涵。 8、觀察方程,它的形式具有什么特點(diǎn)? 深入理解和掌握斜截式方程的特點(diǎn)? 學(xué)生討論,教師及時給予評價(jià)。 問 題 設(shè)計(jì)意圖 師生活動 9、直線在軸上的截距是什么? 使學(xué)生理解“截距”與“距離”兩個概念的區(qū)別。 學(xué)生思考回答,教師評價(jià)。 10、你如何從直線方程的角度認(rèn)識一次函數(shù)?一次函數(shù)中和的幾何意義是什么?你能說出一次函數(shù)圖象的特點(diǎn)嗎? 體會直線的斜截式方程與一次函數(shù)的關(guān)系. 學(xué)生思考、討論,教師評價(jià)、歸納概括。 11、例2的教學(xué)。 掌握從直線方程的角度判斷兩條直線相互平行,或相互垂直;進(jìn)一步理解斜截式方程中的幾何意義。 教師引導(dǎo)學(xué)生分析:用斜率判斷兩條直線平行、垂直結(jié)論。思考(1)時, 有何關(guān)系?(2)時,有何關(guān)系?在此由學(xué)生得出結(jié)論: 且; 12、課堂練習(xí)第100頁練習(xí)第1,2,3,4題。 鞏固本節(jié)課所學(xué)過的知識。 學(xué)生獨(dú)立完成,教師檢查反饋。 13、小結(jié) 使學(xué)生對本節(jié)課所學(xué)的知識有一個整體性的認(rèn)識,了解知識的來龍去脈。 教師引導(dǎo)學(xué)生概括:(1)本節(jié)課我們學(xué)過那些知識點(diǎn);(2)直線方程的點(diǎn)斜式、斜截式的形式特點(diǎn)和適用范圍是什么?(3)求一條直線的方程,要知道多少個條件? 14、布置作業(yè):第106頁第1題的(1)、(2)、(3)和第3、5題 鞏固深化 學(xué)生課后獨(dú)立完成。 3.2.2 直線的兩點(diǎn)式方程 一、教學(xué)目標(biāo) 1、知識與技能 (1)掌握直線方程的兩點(diǎn)的形式特點(diǎn)及適用范圍; (2)了解直線方程截距式的形式特點(diǎn)及適用范圍。 2、過程與方法 讓學(xué)生在應(yīng)用舊知識的探究過程中獲得到新的結(jié)論,并通過新舊知識的比較、分析、應(yīng)用獲得新知識的特點(diǎn)。 3、情態(tài)與價(jià)值觀 (1)認(rèn)識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化; (2)培養(yǎng)學(xué)生用聯(lián)系的觀點(diǎn)看問題。 二、教學(xué)重點(diǎn)、難點(diǎn): 1、 重點(diǎn):直線方程兩點(diǎn)式。 2、難點(diǎn):兩點(diǎn)式推導(dǎo)過程的理解。 三、教學(xué)設(shè)想 問 題 設(shè)計(jì)意圖 師生活動 1、利用點(diǎn)斜式解答如下問題: (1)已知直線經(jīng)過兩點(diǎn),求直線的方程. (2)已知兩點(diǎn)其中,求通過這兩點(diǎn)的直線方程。 遵循由淺及深,由特殊到一般的認(rèn)知規(guī)律。使學(xué)生在已有的知識基礎(chǔ)上獲得新結(jié)論,達(dá)到溫故知新的目的。 教師引導(dǎo)學(xué)生:根據(jù)已有的知識,要求直線方程,應(yīng)知道什么條件?能不能把問題轉(zhuǎn)化為已經(jīng)解決的問題呢?在此基礎(chǔ)上,學(xué)生根據(jù)已知兩點(diǎn)的坐標(biāo),先判斷是否存在斜率,然后求出直線的斜率,從而可求出直線方程: (1) (2) 教師指出:當(dāng)時,方程可以寫成 由于這個直線方程由兩點(diǎn)確定,所以我們把它叫直線的兩點(diǎn)式方程,簡稱兩點(diǎn)式(two-point form). 2、若點(diǎn)中有,或,此時這兩點(diǎn)的直線方程是什么? 使學(xué)生懂得兩點(diǎn)式的適用范圍和當(dāng)已知的兩點(diǎn)不滿足兩點(diǎn)式的條件時它的方程形式。 教師引導(dǎo)學(xué)生通過畫圖、觀察和分析,發(fā)現(xiàn)當(dāng)時,直線與軸垂直,所以直線方程為:;當(dāng)時,直線與軸垂直,直線方程為:。 問 題 設(shè)計(jì)意圖 師生活動 3、例3 教學(xué) 已知直線與軸的交點(diǎn)為A,與軸的交點(diǎn)為B,其中,求直線的方程。 使學(xué)生學(xué)會用兩點(diǎn)式求直線方程;理解截距式源于兩點(diǎn)式,是兩點(diǎn)式的特殊情形。 教師引導(dǎo)學(xué)生分析題目中所給的條件有什么特點(diǎn)?可以用多少方法來求直線的方程?那種方法更為簡捷?然后由求出直線方程: 教師指出:的幾何意義和截距式方程的概念。 4、例4教學(xué) 已知三角形的三個頂點(diǎn)A(-5,0),B(3,-3),C(0,2),求BC邊所在直線的方程,以及該邊上中線所在直線的方程。 讓學(xué)生學(xué)會根據(jù)題目中所給的條件,選擇恰當(dāng)?shù)闹本€方程解決問題。 教師給出中點(diǎn)坐標(biāo)公式,學(xué)生根據(jù)自己的理解,選擇恰當(dāng)方法求出邊BC所在的直線方程和該邊上中線所在直線方程。在此基礎(chǔ)上,學(xué)生交流各自的作法,并進(jìn)行比較。 5、課堂練習(xí) 第102頁第1、2、3題。 學(xué)生獨(dú)立完成,教師檢查、反饋。 6、小結(jié) 增強(qiáng)學(xué)生對直線方種四種形式(點(diǎn)斜式、斜截式、兩點(diǎn)式、截距式)互相之間的聯(lián)系的理解。 教師提出:(1)到目前為止,我們所學(xué)過的直線方程的表達(dá)形式有多少種?它們之間有什么關(guān)系? (2)要求一條直線的方程,必須知道多少個條件? 7、布置作業(yè) 鞏固深化,培養(yǎng)學(xué)生的獨(dú)立解決問題的能力。 學(xué)生課后完成 3.2.3 直線的一般式方程 一、教學(xué)目標(biāo) 1、知識與技能 (1)明確直線方程一般式的形式特征; (2)會把直線方程的一般式化為斜截式,進(jìn)而求斜率和截距; (3)會把直線方程的點(diǎn)斜式、兩點(diǎn)式化為一般式。 2、過程與方法 學(xué)會用分類討論的思想方法解決問題。 3、情態(tài)與價(jià)值觀 (1)認(rèn)識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化; (2)用聯(lián)系的觀點(diǎn)看問題。 二、教學(xué)重點(diǎn)、難點(diǎn): 1、重點(diǎn):直線方程的一般式。 2、難點(diǎn):對直線方程一般式的理解與應(yīng)用。 三、教學(xué)設(shè)想 問 題 設(shè)計(jì)意圖 師生活動 1、(1)平面直角坐標(biāo)系中的每一條直線都可以用一個關(guān)于的二元一次方程表示嗎? (2)每一個關(guān)于的二元一次方程(A,B不同時為0)都表示一條直線嗎? 使學(xué)生理解直線和二元一次方程的關(guān)系。 教師引導(dǎo)學(xué)生用分類討論的方法思考探究問題(1),即直線存在斜率和直線不存在斜率時求出的直線方程是否都為二元一次方程。對于問題(2),教師引導(dǎo)學(xué)生理解要判斷某一個方程是否表示一條直線,只需看這個方程是否可以轉(zhuǎn)化為直線方程的某種形式。為此要對B分類討論,即當(dāng)時和當(dāng)B=0時兩種情形進(jìn)行變形。然后由學(xué)生去變形判斷,得出結(jié)論: 關(guān)于的二元一次方程,它都表示一條直線。 教師概括指出:由于任何一條直線都可以用一個關(guān)于的二元一次方程表示;同時,任何一個關(guān)于的二元一次方程都表示一條直線。 我們把關(guān)于關(guān)于的二元一次方程(A,B不同時為0)叫做直線的一般式方程,簡稱一般式(general form). 2、直線方程的一般式與其他幾種形式的直線方程相比,它有什么優(yōu)點(diǎn)? 使學(xué)生理解直線方程的一般式的與其他形 學(xué)生通過對比、討論,發(fā)現(xiàn)直線方程的一般式與其他形式的直線方程的一個不同點(diǎn)是: 問 題 設(shè)計(jì)意圖 師生活動 式的不同點(diǎn)。 直線的一般式方程能夠表示平面上的所有直線,而點(diǎn)斜式、斜截式、兩點(diǎn)式方程,都不能表示與軸垂直的直線。 3、在方程中,A,B,C為何值時,方程表示的直線 (1)平行于軸;(2)平行于軸;(3)與軸重合;(4)與重合。 使學(xué)生理解二元一次方程的系數(shù)和常數(shù)項(xiàng)對直線的位置的影響。 教師引導(dǎo)學(xué)生回顧前面所學(xué)過的與軸平行和重合、與軸平行和重合的直線方程的形式。然后由學(xué)生自主探索得到問題的答案。 4、例5的教學(xué) 已知直線經(jīng)過點(diǎn)A(6,-4),斜率為,求直線的點(diǎn)斜式和一般式方程。 使學(xué)生體會把直線方程的點(diǎn)斜式轉(zhuǎn)化為一般式,把握直線方程一般式的特點(diǎn)。 學(xué)生獨(dú)立完成。然后教師檢查、評價(jià)、反饋。指出:對于直線方程的一般式,一般作如下約定:一般按含項(xiàng)、含項(xiàng)、常數(shù)項(xiàng)順序排列;項(xiàng)的系數(shù)為正;,的系數(shù)和常數(shù)項(xiàng)一般不出現(xiàn)分?jǐn)?shù);無特加要時,求直線方程的結(jié)果寫成一般式。 5、例6的教學(xué) 把直線的一般式方程化成斜截式,求出直線的斜率以及它在軸與軸上的截距,并畫出圖形。 使學(xué)生體會直線方程的一般式化為斜截式,和已知直線方程的一般式求直線的斜率和截距的方法。 先由學(xué)生思考解答,并讓一個學(xué)生上黑板板書。然后教師引導(dǎo)學(xué)生歸納出由直線方程的一般式,求直線的斜率和截距的方法:把一般式轉(zhuǎn)化為斜截式可求出直線的斜率的和直線在軸上的截距。求直線與軸的截距,即求直線與軸交點(diǎn)的橫坐標(biāo),為此可在方程中令=0,解出值,即為與直線與軸的截距。 在直角坐標(biāo)系中畫直線時,通常找出直線下兩個坐標(biāo)軸的交點(diǎn)。 6、二元一次方程的每一個解與坐標(biāo)平面中點(diǎn)的有什么關(guān)系?直線與二元一次方程的解之間有什么關(guān)系? 使學(xué)生進(jìn)一步理解二元一次方程與直線的關(guān)系,體會直解坐標(biāo)系把直線與方程聯(lián)系起來。 學(xué)生閱讀教材第105頁,從中獲得對問題的理解。 7、課堂練習(xí) 第105練習(xí)第2題和第3(2) 鞏固所學(xué)知識和方法。 學(xué)生獨(dú)立完成,教師檢查、評價(jià)。 問 題 設(shè)計(jì)意圖 師生活動 8、小結(jié) 使學(xué)生對直線方程的理解有一個整體的認(rèn)識。 (1)請學(xué)生寫出直線方程常見的幾種形式,并說明它們之間的關(guān)系。 (2)比較各種直線方程的形式特點(diǎn)和適用范圍。 (3)求直線方程應(yīng)具有多少個條件? (4)學(xué)習(xí)本節(jié)用到了哪些數(shù)學(xué)思想方法? 9、布置作業(yè) 第106頁習(xí)題3.2第10題和第11題。 鞏固課堂上所學(xué)的知識和方法。 學(xué)生課后獨(dú)立思考完成。- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 直線的方程 2019 2020 年高 數(shù)學(xué) 3.2 直線 方程 教案 新人 必修
鏈接地址:http://m.kudomayuko.com/p-2599370.html