2019-2020年高中數(shù)學(xué) 第9課時《分段函數(shù)》教案(學(xué)生版) 蘇教版必修1.doc
《2019-2020年高中數(shù)學(xué) 第9課時《分段函數(shù)》教案(學(xué)生版) 蘇教版必修1.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 第9課時《分段函數(shù)》教案(學(xué)生版) 蘇教版必修1.doc(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 第9課時《分段函數(shù)》教案(學(xué)生版) 蘇教版必修1 【學(xué)習(xí)導(dǎo)航】 知識網(wǎng)絡(luò) 分段函數(shù) 學(xué)習(xí)要求 1、了解分?jǐn)?shù)函數(shù)的定義; 2、學(xué)會求分段函數(shù)定義域、值域; 3、學(xué)會運用函數(shù)圖象來研究分段函數(shù); 自學(xué)評價: 1、分段函數(shù)的定義 在函數(shù)定義域內(nèi),對于自變量x的不同取值范圍,有著不同的對應(yīng)法則,這樣的函數(shù)叫做分段函數(shù); 2、分段函數(shù)定義域,值域; 分段函數(shù)定義域各段定義域的并集,其值域是各段值域的并集(填“并”或“交”) 3、分段函數(shù)圖象 畫分段函數(shù)的圖象,應(yīng)在各自定義域之下畫出定義域所對應(yīng)的解析式的圖象; 【精典范例】 一、含有絕對值的解析式 例1、已知函數(shù)y=|x-1|+|x+2| (1)作出函數(shù)的圖象。 (2)寫出函數(shù)的定義域和值域。 二、實際生活中函數(shù)解析式問題 例2、某同學(xué)從甲地以每小時6千米的速度步行2小時到達(dá)乙地,在乙地耽擱1小時后,又以每小時4千米的速度步行返回甲地。寫出該同學(xué)在上述過程中,離甲地的距離S(千米)和時間t(小時)的函數(shù)關(guān)系式,并作出函數(shù)圖象。 點評:某些實際問題的函數(shù)解析式常用分段函數(shù)表示,須針對自變量的分段變化情況,列出各段不同的解析式,再依據(jù)自變量的不同取值范圍,分段畫出函數(shù)的圖象. 三、二次函數(shù)在區(qū)間上的最值問題 例3、已知函數(shù)f(x)=2x2-2ax+3在區(qū)間[-1,1]上有最小值,記作g(a). (1)求g(a)的函數(shù)表達(dá)式 (2)求g(a)的最大值。 點評:二次函數(shù)在閉區(qū)間上的最值問題往往結(jié)合圖象討論。 追蹤訓(xùn)練 1、設(shè)函數(shù)f(x)=則f(-4)=___________,若f(x0)=8,則x0=________ 2、已知函數(shù)f(x)= 求f(1),f[f(-3)],f{f[f(-3)]}的值. 3、 出下列函數(shù)圖象 y=┃x+2┃-┃x-5┃ 4、已知函數(shù)y=,則f(4)=_______. 5、已知函數(shù)f(x)= (1)求函數(shù)定義域; (2)化簡解析式用分段函數(shù)表示; (3)作出函數(shù)圖象 學(xué)生質(zhì)疑 教師釋疑 。 聽課隨筆 【師生互動】- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 分段函數(shù) 2019-2020年高中數(shù)學(xué) 第9課時分段函數(shù)教案學(xué)生版 蘇教版必修1 2019 2020 年高 數(shù)學(xué) 課時 分段 函數(shù) 教案 學(xué)生 蘇教版 必修
鏈接地址:http://m.kudomayuko.com/p-2613003.html